语音识别之MFCC特征提取

时间: 2024-05-05 17:12:30 浏览: 20
MFCC(Mel-scale Frequency Cepstral Coefficients)是一种常用的语音特征提取方法,广泛应用于语音识别领域。下面是一个演示如何使用Python进行MFCC特征提取的例子: ```python import numpy as np import scipy.io.wavfile as wav from python_speech_features import mfcc # 读取音频文件 rate, signal = wav.read("audio.wav") # 提取MFCC特征 mfcc_features = mfcc(signal, rate) # 打印MFCC特征 print(mfcc_features) ``` 在这个例子中,我们使用了`scipy`库中的`wavfile`模块来读取音频文件,并使用`python_speech_features`库中的`mfcc`函数来提取MFCC特征。`mfcc`函数接受两个参数:音频信号和采样率。它返回一个包含MFCC特征的二维数组。
相关问题

语音识别mfcc特征值提取matlab代码

### 回答1: 语音识别领域中,MFCC是一种十分常用的特征提取方法。MFCC可以将语音信号的频率特性较好地表征出来,因此广泛应用于语音识别、语音合成、语音压缩等领域。下面是基于MATLAB实现的MFCC特征提取代码: 1、读取语音信号 [signal,fs] = audioread('audio.wav'); 其中,'audio.wav'为需要处理的语音文件路径。 2、预加重 语音信号的高频信号比低频信号容易受到背景噪声干扰,因此需要进行预加重来强调高频信号。预加重的公式如下: s(i) = s(i) - pre_emph * s(i-1) 其中,s(i)为当前时刻的语音样本,s(i-1)为上一时刻的语音样本,pre_emph为预加重系数。 进行预加重,在MATLAB中的实现代码如下: pre_emph = 0.97; for i = 2:length(signal) signal(i) = signal(i) - pre_emph * signal(i-1); end 3、分帧 将预加重后的语音信号分成长度相等的帧,通常一帧的长度为20-30ms,并且将相邻两帧之间有50%的重叠。 frame_length = 0.025; %帧长为25ms frame_overlap = 0.5; %帧移为50% frame_size = round(frame_length * fs); %计算帧长的样本点数 frame_shift = round(frame_size * frame_overlap); %计算帧移的样本点数 frame_num = fix((length(signal) - frame_size) / frame_shift + 1); %计算总帧数 frames = zeros(frame_size,frame_num); for i = 1:frame_num frame_start = (i - 1) * frame_shift + 1; frame_end = frame_start + frame_size - 1; frames(:,i) = signal(frame_start:frame_end); end 4、加窗 分帧后的语音信号需要进行加窗处理,以消除分帧时引入的边缘效应,并且窗函数应适合于信号的频谱特性。通常使用汉宁窗或矩形窗。 for i = 1:frame_num frames(:,i) = frames(:,i) .* hamming(frame_size); end 5、快速傅里叶变换 对加窗后的语音信号进行快速傅里叶变换,以得到其幅度谱和相位谱。 fft_size = 256; %FFT的点数 fft_num = fix(frame_size / 2) + 1; %FFT后得到的频谱点数 fft_frames = zeros(fft_size,frame_num); for i = 1:frame_num frame = frames(:,i); frame = [frame;zeros(fft_size - frame_size,1)]; fft_frames(:,i) = abs(fft(frame,fft_size)); end 6、Mel频率倒谱系数 使用Mel滤波器组将信号的频谱压缩到较低的频率范围内,从而提取特征。Mel滤波器组的带通滤波器通常采用三角形响应曲线。使用Mel滤波器组在MATLAB的实现如下: mel_num = 20; %Mel滤波器的数量 mel_low_f = 0; mel_high_f = 2595 * log10(1 + fs / 2 / 700); mel_f = linspace(mel_low_f,mel_high_f,mel_num + 2); mel_f_hz = 700 * (10 .^ (mel_f / 2595) - 1); %转化为Hz单位 mel_filter = zeros(fft_num,mel_num); for i = 2:(mel_num + 1) mel_filter(:,i-1) = trimf(1:fft_num,[mel_f_hz(i-1),mel_f_hz(i),mel_f_hz(i+1)]); end MFCC = zeros(mel_num,frame_num); for i = 1:frame_num S = fft_frames(1:fft_num,i); M = S .* mel_filter; M = log(sum(M,1)); M = dct(M); MFCC(:,i) = M(2:mel_num+1); %取Mel倒谱系数的第2-21项 end 最终,我们可以得到一个大小为20×N的MFCC特征矩阵,其中N为语音信号总帧数。在实际应用中,这些MFCC特征通常作为输入进入其他分类算法进行识别和分类。 ### 回答2: 语音识别是一个重要的研究领域,MFCC(Mel-Frequency Cepstral Coefficients)是其中一种用于提取语音特征的方法。MFCC是一个高度优化的特征提取方法,对于许多语音识别系统来说具有很高的准确性。 MATLAB是一种广泛使用的数学软件包,也是一个流行的语音识别平台。下面是一个MFCC特征提取MATLAB代码的例子: fu % 预处理 - 高通滤波 fs = 8000; [data, fs] = audioread('test.wav'); data = highpass(data, 100, fs); % 分帧 frame_length_ms = 30; frame_shift_ms = 10; frame_length = round(frame_length_ms * fs / 1000); frame_shift = round(frame_shift_ms * fs / 1000); frames = enframe(data, frame_length, frame_shift); % 全波形络线提取 pre_emphasis_coefficient = 0.97; u = [1, zeros(1, frame_length - 1)]; pre_emphasis = filter(1, u, data); % 傅里叶变换 ffts = 2 .^ nextpow2(frame_length); spectrum = abs(fft(frames, ffts)); % 梅尔倒谱系数提取 mel_filterbank = mel_filterbank(fs, ffts, 26); mfccs = 20 * log10(mel_filterbank * spectrum(1:size(mel_filterbank, 2), :)); % 梅尔漂移系数提取 cepstral_lifter = 22; mfccs = lifter(mfccs, cepstral_lifter); % 特征向量标准化 mfccs = bsxfun(@minus, mfccs, mean(mfccs)); mfccs = bsxfun(@rdivide, mfccs, std(mfccs)); disp(mfccs); 以上是一个MFCC特征提取MATLAB代码的简要示例,主要包括预处理、分帧、全波形络线提取、傅里叶变换、梅尔倒谱系数提取和梅尔漂移系数提取等步骤,可以给大家提供一些参考。 ### 回答3: MFCC即Mel频率倒谱系数,是语音识别中一种常用的特征值提取方法。下面介绍基于MATLAB实现的语音识别MFCC特征值提取代码。 1. 信号预处理 读取音频文件,进行线性预测分析(LPC)处理,提取谱包络信息。代码如下: [y, fs] = audioread('test.wav'); %读取音频文件 preEmph = [1, -0.97]; %预加重滤波器系数 yf = filter(preEmph, 1, y); %预处理信号 winLen = 0.025; %帧长25ms winStep = 0.01; %帧移10ms nfft = 2^(nextpow2(winLen*fs)); %FFT点数 2. 傅里叶变换 对经过预处理的音频信号进行加窗并进行快速傅里叶变换(FFT)将其转换为频域信号。代码如下: win = hamming(round(winLen*fs),'periodic'); %汉明窗 0.5*(1-cos(2*pi*(0:winLen*fs-1)/(winLen*fs-1))) nOverlap = round(winStep*fs);%帧移 hopStart = 1 : nOverlap : (length(yf)-nfft); for i=1:length(hopStart) temp = yf(hopStart(i) : hopStart(i)+nfft-1) .* win; spectrum = abs(fft(temp, nfft)); end MFCC系数计算 根据MFCC原理,将傅里叶变换得到的频谱图转换为Mel滤波器组的系数,最后通过离散余弦变换(DCT)将其转换为MFCC系数。代码如下: MelFreqMin = 0; %Mel频率的最小值 MelFreqMax = 2595*log10(1+(fs/2)/700); %Mel频率的最大值 numFilters = 20; %Mel滤波器的数量 MelSpacing = linspace(MelFreqMin, MelFreqMax, numFilters+2); %计算Mel频率间距 HzSpacing = hz2mel(linspace(mel2hz(MelFreqMin), mel2hz(MelFreqMax), nfft/2+1)); %计算Hz频率间距 MelWeights = zeros(numFilters, nfft/2+1); %预分配矩阵 for filtNum = 1 : numFilters thisRange = zeros(1, nfft/2+1); lMel = MelSpacing(filtNum); mMel = MelSpacing(filtNum+1); rMel = MelSpacing(filtNum+2); leftSlope = 1 / (mMel - lMel); rightSlope = 1 / (rMel - mMel); for i = 1 : nfft/2+1 if HzSpacing(i) >= lMel && HzSpacing(i) <= mMel thisRange(i) = (HzSpacing(i) - lMel) * leftSlope; elseif HzSpacing(i) >= mMel && HzSpacing(i) <= rMel thisRange(i) = (rMel - HzSpacing(i)) * rightSlope; end end MelWeights(filtNum, :) = thisRange; end MelWeights = MelWeights ./ repmat(sum(MelWeights,2),1,size(MelWeights,2)); %归一化 Z = MelWeights * abs(spectrum(1 : nfft/2+1)).^2; L = 20; %DCT系数个数 mfccCoeff = dct(log(Z)); %DCT变换 mfccCoeff = mfccCoeff(2 : L+1); %取2~21 MFCC系数 至此,我们就实现了语音识别MFCC特征值提取的MATLAB代码,提取到了MFCC系数。这些特征值可以用于模型训练和分类识别。

语音mfcc特征提取并通过cnn深度学习训练实现语音识别

语音识别是指将声音信号转换为文本标签的能力。MFCC是一种用于提取语音信号特征的算法,该算法根据人耳的感知特性,将语音信号映射到一个Mel频率轴上,并对频域信号进行离散余弦变换(DCT)处理,最终提取出来13个MFCC特征。 通过使用CNN深度学习网络进行语音识别,可以实现更高的准确率和更好的鲁棒性。同样是通过人工神经网络对MFCC特征进行训练,CNN具有学习到更高级别的特征的能力,而且可以自适应地调整特征提取过程中的权重或者卷积核大小,使其更适合于不同语种和语音环境下的语音信号。 在训练的过程中,需要使用大量标注好的语音数据集,并使用交叉验证的方法来评估模型的性能。通过反向传播误差和权重更新,CNN模型可以不断优化自身,从而训练出更好的语音识别模型。 总之,利用MFCC特征提取和CNN深度学习训练可以在语音信号处理和语音识别领域有广泛的应用,因为这种方法简单易用、处理速度快、准确率较高,并且可以针对具体应用场合进行进一步的调节和优化。

相关推荐

最新推荐

recommend-type

使用python实现语音文件的特征提取方法

语音识别是当前人工智能的比较热门的方向,技术也比较成熟,各大公司也相继推出了各自的语音助手机器人,如百度的小度机器人、阿里的天猫精灵等。语音识别算法当前主要是由RNN、LSTM、DNN-HMM等机器学习和深度学习...
recommend-type

MFCC参数提取MATLAB实例.docx

mfcc是语音识别的一个重要特征。用matlab来编程实现对其提取。是一种成熟的源代码。
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MATLAB柱状图在信号处理中的应用:可视化信号特征和频谱分析

![matlab画柱状图](https://img-blog.csdnimg.cn/3f32348f1c9c4481a6f5931993732f97.png) # 1. MATLAB柱状图概述** MATLAB柱状图是一种图形化工具,用于可视化数据中不同类别或组的分布情况。它通过绘制垂直条形来表示每个类别或组中的数据值。柱状图在信号处理中广泛用于可视化信号特征和进行频谱分析。 柱状图的优点在于其简单易懂,能够直观地展示数据分布。在信号处理中,柱状图可以帮助工程师识别信号中的模式、趋势和异常情况,从而为信号分析和处理提供有价值的见解。 # 2. 柱状图在信号处理中的应用 柱状图在信号处理
recommend-type

hive中 的Metastore

Hive中的Metastore是一个关键的组件,它用于存储和管理Hive中的元数据。这些元数据包括表名、列名、表的数据类型、分区信息、表的存储位置等信息。Hive的查询和分析都需要Metastore来管理和访问这些元数据。 Metastore可以使用不同的后端存储来存储元数据,例如MySQL、PostgreSQL、Oracle等关系型数据库,或者Hadoop分布式文件系统中的HDFS。Metastore还提供了API,使得开发人员可以通过编程方式访问元数据。 Metastore的另一个重要功能是跟踪表的版本和历史。当用户对表进行更改时,Metastore会记录这些更改,并且可以让用户回滚到
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

MATLAB柱状图在数据分析中的作用:从可视化到洞察

![MATLAB柱状图在数据分析中的作用:从可视化到洞察](https://img-blog.csdnimg.cn/img_convert/1a36558cefc0339f7836cca7680c0aef.png) # 1. MATLAB柱状图概述** 柱状图是一种广泛用于数据可视化的图表类型,它使用垂直条形来表示数据中不同类别或组别的值。在MATLAB中,柱状图通过`bar`函数创建,该函数接受数据向量或矩阵作为输入,并生成相应的高度条形。 柱状图的优点在于其简单性和易于理解性。它们可以快速有效地传达数据分布和组别之间的比较。此外,MATLAB提供了广泛的定制选项,允许用户调整条形颜色、
recommend-type

软件工程每个学期的生活及学习目标

软件工程每个学期的生活及学习目标可能包括以下内容: 1. 学习软件开发的基本理论和实践知识,掌握常用的编程语言和开发工具。 2. 熟悉软件开发的流程和方法,了解软件工程的标准和规范。 3. 掌握软件需求分析、设计、开发、测试、部署和维护的技能,能够独立完成简单的软件开发任务。 4. 培养团队合作的能力,学会与他人进行有效的沟通和协作,共同完成软件开发项目。 5. 提高自己的计算机技术水平,了解最新的软件开发技术和趋势,积极参与开源社区和技术交流活动。 6. 注重学习方法和习惯的培养,养成良好的学习和生活习惯,保持健康的身心状态。 7. 积极参加校内外的实践活动和比赛,拓展自己的视