dqn算法python代码解决np问题
时间: 2023-10-03 12:09:38 浏览: 90
用matlab自主搭建DQN算法解决CartPole问题
5星 · 资源好评率100%
D (Deep Q-Network) 是一种使用深度神经网络来实现智能体控制的强化学习算法。下面是一个简单的 DQN 的 Python 代码示例,用来解决一个 np 问题(可能是指 NumPy 库):
```python
import random
import gym
import numpy as np
from collections import deque
from keras.models import Sequential
from keras.layers import Dense
from keras.optimizers import Adam
# 定义 DQN Agent 类
class DQNAgent:
def __init__(self, state_size, action_size):
# 初始化参数
self.state_size = state_size
self.action_size = action_size
self.memory = deque(maxlen=2000)
self.gamma = 0.95 # 折扣因子
self.epsilon = 1.0 # 探索率
self.epsilon_min = 0.01
self.epsilon_decay = 0.995
self.learning_rate = 0.001
self.model = self._build_model()
def _build_model(self):
# 构建神经网络模型
model = Sequential()
model.add(Dense(24, input_dim=self.state_size, activation='relu'))
model.add(Dense(24, activation='relu'))
model.add(Dense(self.action_size, activation='linear'))
model.compile(loss='mse', optimizer=Adam(lr=self.learning_rate))
return model
def act(self, state):
# 根据当前状态选择动作
if np.random.rand() <= self.epsilon:
return random.randrange(self.action_size)
act_values = self.model.predict(state)
return np.argmax(act_values = target
self.model.fit(state, target_f, epochs=1, verbose=0)
if self.epsilon > self.epsilon_min:
self.epsilon *= self.epsilon_decay
# 定义环境和智能体
env = gym.make('CartPole-v1')
state_size = env.observation_space.shape<span class="em">1</span><span class="em">2</span><span class="em">3</span>
#### 引用[.reference_title]
- *1* *2* [DQN的Python代码](https://blog.csdn.net/weixin_35756892/article/details/129523906)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"]
- *3* [python实现DQN代码](https://blog.csdn.net/bajiaoyu517/article/details/129063353)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"]
[ .reference_list ]
阅读全文