#%% import pandas as pd import numpy as np import matplotlib.pyplot as plt # 读取Excel文件中的所有表格 excel_file = pd.ExcelFile('附件1-装箱数据.xlsx') # 读取指定表格 df1 = pd.read_excel(excel_file, sheet_name='订单数据') df2 = pd.read_excel(excel_file, sheet_name='耗材数据') # 检查是否有缺失值 print(df1.isnull().sum()) print(df2.isnull().sum()) print(df1.head()) print(df2.head()) df2=df2['耗材类型'].replace({'袋':1, '箱': 0}, inplace=True) df2.drop(columns=['重量']).values print(df1.head()) print(df2.head())
时间: 2023-06-19 12:03:40 浏览: 99
这段代码主要是对Excel文件中的两个表格进行读取,并进行了一些简单的数据处理和检查缺失值的操作。具体解释如下:
- 首先,通过 pandas 库中的 ExcelFile 类读取 Excel 文件中的所有表格。
- 然后,使用 read_excel() 方法读取指定的表格,并将其存储为 DataFrame 对象,分别命名为 df1 和 df2。
- 接着,使用 isnull() 和 sum() 方法检查 df1 和 df2 中是否有缺失值。
- 然后,使用 head() 方法查看 df1 和 df2 的前几行数据,以确保读取正确。
- 接下来,对 df2 中的耗材类型进行转换,转换为数字表示,袋为1,箱为0。
- 然后,使用 drop() 方法删除 df2 中的重量列,并使用 values 属性将其转换为 NumPy 数组。
- 最后,再次使用 head() 方法查看 df1 和 df2 的前几行数据,以确保数据处理和转换正确。
需要注意的是,代码中的 df2=df2['耗材类型'].replace({'袋':1, '箱': 0}, inplace=True) 这一行不是很合理,因为它实际上没有对 df2 进行任何操作。正确的写法应该是 df2['耗材类型'].replace({'袋':1, '箱': 0}, inplace=True)。
相关问题
import pandas as pd import matplotlib.pyplot as plt %matplotlib inline import numpy as np
import pandas as pd是Python中用于数据分析和处理的库,它提供了丰富的数据结构和数据分析工具。通过使用pd别名,我们可以方便地引用pandas库中的函数和类。
matplotlib.pyplot是Python中用于绘制图表和可视化数据的库。通过使用plt别名,我们可以方便地引用matplotlib.pyplot库中的函数和类。
%matplotlib inline是Jupyter Notebook中的魔术命令,它用于在Notebook中显示matplotlib绘制的图表。这个命令告诉Notebook将图表直接嵌入到输出单元格中,而不是弹出一个新窗口显示图表。
import numpy as np是导入NumPy库,NumPy是Python中用于科学计算的库,它提供了高性能的多维数组对象和各种数学函数。
import pandas as pd import numpy as np import matplotlib.pyplot as plt
当你在 Python 中使用 `import pandas as pd`, `import numpy as np`, 和 `import matplotlib.pyplot as plt` 这些语句时,你是在导入几个非常流行的数据分析和可视化库:
1. **pandas**: pandas 是一个强大的数据处理库,常用于数据清洗、整理、分析和操作。它提供了 DataFrame 对象,这是用于存储表格型数据的主要数据结构,以及 Series 对象,类似一维数组,非常适合进行数据操作和分析。
2. **numpy**: numpy 是科学计算的基础库,主要专注于高效地处理大型数组和矩阵运算,提供了大量的数学函数和工具,是其他许多数据处理库的基础。
3. **matplotlib.pyplot**: matplotlib 是一个绘图库,通过 `pyplot` 模块提供了一个简单的接口来创建各种图表,包括线图、柱状图、散点图等。它是 Python 最常用的绘图工具之一。
有了这三者,你可以方便地处理数据、执行数值计算,并将结果以可视化的方式呈现出来。