#%% import pandas as pd import numpy as np import matplotlib.pyplot as plt # 读取Excel文件中的所有表格 excel_file = pd.ExcelFile('附件1-装箱数据.xlsx') # 读取指定表格 df1 = pd.read_excel(excel_file, sheet_name='订单数据') df2 = pd.read_excel(excel_file, sheet_name='耗材数据') # 检查是否有缺失值 print(df1.isnull().sum()) print(df2.isnull().sum()) print(df1.head()) print(df2.head()) df2=df2['耗材类型'].replace({'袋':1, '箱': 0}, inplace=True) df2.drop(columns=['重量']).values print(df1.head()) print(df2.head())
时间: 2023-06-19 17:03:40 浏览: 111
这段代码主要是对Excel文件中的两个表格进行读取,并进行了一些简单的数据处理和检查缺失值的操作。具体解释如下:
- 首先,通过 pandas 库中的 ExcelFile 类读取 Excel 文件中的所有表格。
- 然后,使用 read_excel() 方法读取指定的表格,并将其存储为 DataFrame 对象,分别命名为 df1 和 df2。
- 接着,使用 isnull() 和 sum() 方法检查 df1 和 df2 中是否有缺失值。
- 然后,使用 head() 方法查看 df1 和 df2 的前几行数据,以确保读取正确。
- 接下来,对 df2 中的耗材类型进行转换,转换为数字表示,袋为1,箱为0。
- 然后,使用 drop() 方法删除 df2 中的重量列,并使用 values 属性将其转换为 NumPy 数组。
- 最后,再次使用 head() 方法查看 df1 和 df2 的前几行数据,以确保数据处理和转换正确。
需要注意的是,代码中的 df2=df2['耗材类型'].replace({'袋':1, '箱': 0}, inplace=True) 这一行不是很合理,因为它实际上没有对 df2 进行任何操作。正确的写法应该是 df2['耗材类型'].replace({'袋':1, '箱': 0}, inplace=True)。
相关问题
import pandas as pd import numpy as np import datetime import matplotlib.pyplot as plt from pandas.plotting import radviz该环境下输出每次更新的权重的代码
好的,以下是一个基于TensorFlow的神经网络模型,可以输出每次更新的权重的代码:
```python
import tensorflow as tf
from tensorflow import keras
import pandas as pd
import numpy as np
# 加载数据集
data = pd.read_csv('data.csv')
labels = pd.read_csv('labels.csv')
# 构建模型
model = keras.Sequential([
keras.layers.Dense(128, input_shape=(data.shape[1],), activation='relu'),
keras.layers.Dense(64, activation='relu'),
keras.layers.Dense(1, activation='sigmoid')
])
# 定义回调函数
class MyCallback(tf.keras.callbacks.Callback):
def on_epoch_end(self, epoch, logs=None):
for layer in self.model.layers:
weights = layer.get_weights()
print(weights)
# 编译模型
model.compile(optimizer='adam',
loss='binary_crossentropy',
metrics=['accuracy'])
# 创建回调函数实例
callbacks = MyCallback()
# 训练模型
model.fit(data, labels, epochs=10, verbose=1, callbacks=[callbacks])
```
这个代码首先加载了数据集,然后定义了一个包含三个层的神经网络模型。模型的第一层是一个具有128个神经元的全连接层,使用ReLU激活函数。第二层是一个具有64个神经元的全连接层,同样使用ReLU激活函数。最后一层是一个具有1个神经元的全连接层,使用sigmoid激活函数。
接着,代码定义了一个回调函数MyCallback,当每个epoch结束时,该函数会输出每个层的权重。
然后,代码编译了模型,使用adam优化器和二元交叉熵损失函数进行训练,并在控制台输出了训练过程中的准确率等信息。使用callbacks=[callbacks]将回调函数传递给了fit()函数,以便在每个epoch结束时调用回调函数。
希望这个代码对你有所帮助!
import pandas as pd import numpy as np import matplotlib.pyplot as plt
当你在 Python 中使用 `import pandas as pd`, `import numpy as np`, 和 `import matplotlib.pyplot as plt` 这些语句时,你是在导入几个非常流行的数据分析和可视化库:
1. **pandas**: pandas 是一个强大的数据处理库,常用于数据清洗、整理、分析和操作。它提供了 DataFrame 对象,这是用于存储表格型数据的主要数据结构,以及 Series 对象,类似一维数组,非常适合进行数据操作和分析。
2. **numpy**: numpy 是科学计算的基础库,主要专注于高效地处理大型数组和矩阵运算,提供了大量的数学函数和工具,是其他许多数据处理库的基础。
3. **matplotlib.pyplot**: matplotlib 是一个绘图库,通过 `pyplot` 模块提供了一个简单的接口来创建各种图表,包括线图、柱状图、散点图等。它是 Python 最常用的绘图工具之一。
有了这三者,你可以方便地处理数据、执行数值计算,并将结果以可视化的方式呈现出来。
阅读全文