请帮我将下面的英文翻译为中文:where σ2 is the noise power, and Tj is the transmission power of BS j. hij , which is assumed to be independently and identically distributed based on an exponential distribution with a unit mean, is the channel gain between useri and BS j; the resource schedule-ing horizon τr should be equal to the channel coherence time. Thus the channel statements are regarded as static during the resource allocation process. The achievable rate cij is averaged over an association horizon τa, τa is assumed to be a much larger time scale than that for channel changes, where τa = Nr × τr, and Nr is the number of resource allocation horizons in an association horizon. Therefore, cij is assumed to be constant during an association horizon [5]. This model is suitable for dynamic scenarios.

时间: 2024-04-22 15:26:47 浏览: 8
其中,σ2是噪声功率,Tj是基站j的传输功率。hij被假设为独立同分布的指数分布,均值为1,表示用户i和基站j之间的信道增益;资源调度时长τr应该等于信道相干时间。因此,在资源分配过程中,信道状态被认为是静态的。可达速率cij在关联时长τa上进行平均,τa被假设为比信道变化的时间尺度要大得多,其中τa = Nr × τr,Nr是关联时长内的资源分配时长数。因此,在关联时长[5]内,cij被假设为恒定的。这个模型适用于动态场景。
相关问题

A. Encoding Network of PFSPNet The encoding network is divided into three parts. In the part I, RNN is adopted to model the processing time pij of job i on all machines, which can be converted into a fixed dimensional vector pi. In the part II, the number of machines m is integrated into the vector pi through the fully connected layer, and the fixed dimensional vector p˜i is output. In the part III, p˜i is fed into the convolution layer to improve the expression ability of the network, and the final output η p= [ η p1, η p2,..., η pn] is obtained. Fig. 2 illustrates the encoding network. In the part I, the modelling process for pij is described as follows, where WB, hij , h0 are k-dimensional vectors, h0, U, W, b and WB are the network parameters, and f() is the mapping from RNN input to hidden layer output. The main steps of the part I are shown as follows. Step 1: Input pij to the embedding layer and then obtain the output yij = WB pij ; Step 2: Input yi1 and h0 to the RNN and then obtain the hidden layer output hi1 = f(yi1,h0; U,W, b). Let p1 = h1m ; Step 3: Input yij and hi,j−1, j = 2, 3 ··· , m into RNN in turn, and then obtain the hidden layer output hij = f(yij ,hi,j−1; U,W, b), j = 2, 3 ··· , m. Let pi = him . In the part II, the number of machines m and the vector pi are integrated by the fully connected layer. The details are described as follows. WB and h˜i are d-dimensional vectors, WB W and ˜b are network parameters, and g() denotes the mapping from the input to the output of full connection layer. Step 1: Input the number of machines m to the embedding layer, and the output m = WB m is obtained。Step 2: Input m and pi to the fully connected layer and then obtain the output hi = g([m, pi];W, b); Step 3: Let pi = Relu(hi). In the part III, pi, i = 1, 2,...,n are input into onedimensional convolution layer. The final output vector η pi, i = 1, 2, ··· , n are obtained after the output of convolutional layer goes through the Relu layer.首先逐行仔细的分析此过程,其次怎么使用pytorch用EncoderNetwork类完全实现这个过程的所有功能和步骤

首先,我们需要定义一个EncoderNetwork类,它应该包含三个部分:RNN模型、全连接层和卷积层。以下是一个简单的实现: ``` import torch import torch.nn as nn class EncoderNetwork(nn.Module): def __init__(self, input_size, hidden_size, output_size): super(EncoderNetwork, self).__init__() # RNN Model self.rnn = nn.RNN(input_size, hidden_size, batch_first=True) # Fully Connected Layer self.fc = nn.Linear(hidden_size + 1, output_size) # Convolutional Layer self.conv1d = nn.Conv1d(output_size, output_size, kernel_size=1) # ReLU activation function self.relu = nn.ReLU() def forward(self, x, m): # Part I: RNN Model y = x.view(x.size(0), -1) h0 = torch.zeros(1, x.size(0), self.rnn.hidden_size).to(x.device) out, _ = self.rnn(y, h0) p = out[:, -1, :] # Part II: Fully Connected Layer m = m.view(-1, 1) h = self.fc(torch.cat((p, m), dim=1)) p_ = self.relu(h) # Part III: Convolutional Layer p_ = p_.permute(0, 2, 1) p_ = self.conv1d(p_) p_ = self.relu(p_) p_ = p_.permute(0, 2, 1) return p_ ``` 在上面的代码中,我们定义了一个EncoderNetwork类,它有三个部分:RNN模型、全连接层和卷积层。在forward函数中,我们首先输入pij的张量x和机器数量m,然后按照Part I、Part II和Part III的顺序进行处理。最后,我们返回最终的输出张量。 在这个类的构造函数中,我们定义了RNN模型、全连接层、卷积层和ReLU激活函数。在forward函数中,我们首先将输入x转换为一个2D张量,并将h0初始化为全零张量。然后我们使用RNN模型处理x,得到输出out。在这个过程中,我们只需要使用out的最后一个时间步,即out[:,-1,:],作为RNN模型的输出p。接下来,我们将机器数量m与p连接起来,然后将它们输入到全连接层中。最后,我们将全连接层的输出张量输入到卷积层中,并经过ReLU激活函数处理。 在使用这个类时,我们需要传入三个参数:输入大小input_size、隐藏层大小hidden_size和输出大小output_size。然后,我们可以使用encoder = EncoderNetwork(input_size, hidden_size, output_size)来创建一个EncoderNetwork对象。最后,我们可以使用encoder.forward(x, m)来计算x和m的输出张量。

请用shell遍历所有包含abcdef内容的文件 将这些文件内的abcdef统一替换成hij

可以使用以下命令来遍历所有包含abcdef内容的文件,并将这些文件内的abcdef统一替换成hij: ``` grep -rl "abcdef" /path/to/directory | xargs sed -i 's/abcdef/hij/g' ``` 其中,`/path/to/directory`是包含需要替换的文件的目录路径。这个命令会先使用`grep`命令来查找所有包含`abcdef`内容的文件,并将它们的路径输出。然后,使用`xargs`命令将这些文件路径作为参数传递给`sed`命令,使用`sed`命令将每个文件内的`abcdef`替换成`hij`。

相关推荐

import numpy as np from sklearn import datasets from sklearn.linear_model import LinearRegression np.random.seed(10) class Newton(object): def init(self,epochs=50): self.W = None self.epochs = epochs def get_loss(self, X, y, W,b): """ 计算损失 0.5sum(y_pred-y)^2 input: X(2 dim np.array):特征 y(1 dim np.array):标签 W(2 dim np.array):线性回归模型权重矩阵 output:损失函数值 """ #print(np.dot(X,W)) loss = 0.5np.sum((y - np.dot(X,W)-b)2) return loss def first_derivative(self,X,y): """ 计算一阶导数g = (y_pred - y)*x input: X(2 dim np.array):特征 y(1 dim np.array):标签 W(2 dim np.array):线性回归模型权重矩阵 output:损失函数值 """ y_pred = np.dot(X,self.W) + self.b g = np.dot(X.T, np.array(y_pred - y)) g_b = np.mean(y_pred-y) return g,g_b def second_derivative(self,X,y): """ 计算二阶导数 Hij = sum(X.T[i]X.T[j]) input: X(2 dim np.array):特征 y(1 dim np.array):标签 output:损失函数值 """ H = np.zeros(shape=(X.shape[1],X.shape[1])) H = np.dot(X.T, X) H_b = 1 return H, H_b def fit(self, X, y): """ 线性回归 y = WX + b拟合,牛顿法求解 input: X(2 dim np.array):特征 y(1 dim np.array):标签 output:拟合的线性回归 """ self.W = np.random.normal(size=(X.shape[1])) self.b = 0 for epoch in range(self.epochs): g,g_b = self.first_derivative(X,y) # 一阶导数 H,H_b = self.second_derivative(X,y) # 二阶导数 self.W = self.W - np.dot(np.linalg.pinv(H),g) self.b = self.b - 1/H_bg_b print("itration:{} ".format(epoch), "loss:{:.4f}".format( self.get_loss(X, y , self.W,self.b))) def predict(): """ 需要自己实现的代码 """ pass def normalize(x): return (x - np.min(x))/(np.max(x) - np.min(x)) if name == "main": np.random.seed(2) X = np.random.rand(100,5) y = np.sum(X3 + X**2,axis=1) print(X.shape, y.shape) # 归一化 X_norm = normalize(X) X_train = X_norm[:int(len(X_norm)*0.8)] X_test = X_norm[int(len(X_norm)*0.8):] y_train = y[:int(len(X_norm)0.8)] y_test = y[int(len(X_norm)0.8):] # 牛顿法求解回归问题 newton=Newton() newton.fit(X_train, y_train) y_pred = newton.predict(X_test,y_test) print(0.5np.sum((y_test - y_pred)**2)) reg = LinearRegression().fit(X_train, y_train) y_pred = reg.predict(X_test) print(0.5np.sum((y_test - y_pred)**2)) ——修改代码中的问题,并补全缺失的代码,实现牛顿最优化算法

最新推荐

recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战演练】MATLAB用遗传算法改进粒子群GA-PSO算法

![MATLAB智能算法合集](https://static.fuxi.netease.com/fuxi-official/web/20221101/83f465753fd49c41536a5640367d4340.jpg) # 2.1 遗传算法的原理和实现 遗传算法(GA)是一种受生物进化过程启发的优化算法。它通过模拟自然选择和遗传机制来搜索最优解。 **2.1.1 遗传算法的编码和解码** 编码是将问题空间中的解表示为二进制字符串或其他数据结构的过程。解码是将编码的解转换为问题空间中的实际解的过程。常见的编码方法包括二进制编码、实数编码和树形编码。 **2.1.2 遗传算法的交叉和
recommend-type

openstack的20种接口有哪些

以下是OpenStack的20种API接口: 1. Identity (Keystone) API 2. Compute (Nova) API 3. Networking (Neutron) API 4. Block Storage (Cinder) API 5. Object Storage (Swift) API 6. Image (Glance) API 7. Telemetry (Ceilometer) API 8. Orchestration (Heat) API 9. Database (Trove) API 10. Bare Metal (Ironic) API 11. DNS
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【实战演练】时间序列预测用于个体家庭功率预测_ARIMA, xgboost, RNN

![【实战演练】时间序列预测用于个体家庭功率预测_ARIMA, xgboost, RNN](https://img-blog.csdnimg.cn/img_convert/5587b4ec6abfc40c76db14fbef6280db.jpeg) # 1. 时间序列预测简介** 时间序列预测是一种预测未来值的技术,其基于历史数据中的时间依赖关系。它广泛应用于各种领域,例如经济、金融、能源和医疗保健。时间序列预测模型旨在捕捉数据中的模式和趋势,并使用这些信息来预测未来的值。 # 2. 时间序列预测方法 时间序列预测方法是利用历史数据来预测未来趋势或值的统计技术。在时间序列预测中,有许多不
recommend-type

怎么在集群安装安装hbase

您好,关于如何在集群上安装HBase,步骤大致如下: 1. 在HBase官网上下载最新版本的HBase,并解压到需要安装的目录下; 2. 配置HBase的环境变量:将HBase目录的bin子目录加入到PATH环境变量中; 3. 修改HBase配置文件:在HBase目录下的conf子目录中找到hbase-site.xml文件,并进行相应的配置,如指定HBase的Zookeeper节点等; 4. 启动HBase:使用HBase的bin目录下的start-hbase.sh脚本启动HBase; 5. 验证HBase是否正常运行:使用HBase自带的shell命令行工具操作HBase。 注意:以上步
recommend-type

c++校园超市商品信息管理系统课程设计说明书(含源代码) (2).pdf

校园超市商品信息管理系统课程设计旨在帮助学生深入理解程序设计的基础知识,同时锻炼他们的实际操作能力。通过设计和实现一个校园超市商品信息管理系统,学生掌握了如何利用计算机科学与技术知识解决实际问题的能力。在课程设计过程中,学生需要对超市商品和销售员的关系进行有效管理,使系统功能更全面、实用,从而提高用户体验和便利性。 学生在课程设计过程中展现了积极的学习态度和纪律,没有缺勤情况,演示过程流畅且作品具有很强的使用价值。设计报告完整详细,展现了对问题的深入思考和解决能力。在答辩环节中,学生能够自信地回答问题,展示出扎实的专业知识和逻辑思维能力。教师对学生的表现予以肯定,认为学生在课程设计中表现出色,值得称赞。 整个课程设计过程包括平时成绩、报告成绩和演示与答辩成绩三个部分,其中平时表现占比20%,报告成绩占比40%,演示与答辩成绩占比40%。通过这三个部分的综合评定,最终为学生总成绩提供参考。总评分以百分制计算,全面评估学生在课程设计中的各项表现,最终为学生提供综合评价和反馈意见。 通过校园超市商品信息管理系统课程设计,学生不仅提升了对程序设计基础知识的理解与应用能力,同时也增强了团队协作和沟通能力。这一过程旨在培养学生综合运用技术解决问题的能力,为其未来的专业发展打下坚实基础。学生在进行校园超市商品信息管理系统课程设计过程中,不仅获得了理论知识的提升,同时也锻炼了实践能力和创新思维,为其未来的职业发展奠定了坚实基础。 校园超市商品信息管理系统课程设计的目的在于促进学生对程序设计基础知识的深入理解与掌握,同时培养学生解决实际问题的能力。通过对系统功能和用户需求的全面考量,学生设计了一个实用、高效的校园超市商品信息管理系统,为用户提供了更便捷、更高效的管理和使用体验。 综上所述,校园超市商品信息管理系统课程设计是一项旨在提升学生综合能力和实践技能的重要教学活动。通过此次设计,学生不仅深化了对程序设计基础知识的理解,还培养了解决实际问题的能力和团队合作精神。这一过程将为学生未来的专业发展提供坚实基础,使其在实际工作中能够胜任更多挑战。
recommend-type

关系数据表示学习

关系数据卢多维奇·多斯桑托斯引用此版本:卢多维奇·多斯桑托斯。关系数据的表示学习机器学习[cs.LG]。皮埃尔和玛丽·居里大学-巴黎第六大学,2017年。英语。NNT:2017PA066480。电话:01803188HAL ID:电话:01803188https://theses.hal.science/tel-01803188提交日期:2018年HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaireUNIVERSITY PIERRE和 MARIE CURIE计算机科学、电信和电子学博士学院(巴黎)巴黎6号计算机科学实验室D八角形T HESIS关系数据表示学习作者:Ludovic DOS SAntos主管:Patrick GALLINARI联合主管:本杰明·P·伊沃瓦斯基为满足计算机科学博士学位的要求而提交的论文评审团成员:先生蒂埃里·A·退休记者先生尤尼斯·B·恩