matlab交通标志识别代码
时间: 2023-10-14 21:07:47 浏览: 106
很抱歉,我是一名语言模型,无法为您提供现成的交通标志识别代码。不过,您可以参考以下步骤来构建一个简单的交通标志识别系统:
1. 收集交通标志数据集:您可以从公开数据集或者自己标注的数据集中获取交通标志的图片数据。
2. 数据预处理:对于图像数据,您需要进行一些预处理,如缩放、裁剪、归一化、增强等。这样可以使数据更加标准化,有利于后续的模型训练。
3. 特征提取:对于图像数据,您可以利用卷积神经网络(CNN)进行特征提取。这里可以使用一些预训练的CNN模型,如VGG、ResNet、Inception等。您可以将图像输入到CNN模型中,获取图像的特征向量。
4. 模型训练:将提取的特征向量输入到分类器中进行训练,比如支持向量机(SVM)、决策树、随机森林等。您可以将数据集分成训练集和测试集,用训练集训练模型,用测试集评估模型的性能。
5. 交通标志识别:将待识别的图像输入到模型中,模型将输出对应的交通标志类别。
希望对您有所帮助。
相关问题
matlab gui 交通标志识别代码
以下是基于 MATLAB GUI 的交通标志识别代码:
```matlab
function varargout = traffic_sign_detection(varargin)
% TRAFFIC_SIGN_DETECTION MATLAB code for traffic_sign_detection.fig
% TRAFFIC_SIGN_DETECTION, by itself, creates a new TRAFFIC_SIGN_DETECTION or raises the existing
% singleton*.
%
% H = TRAFFIC_SIGN_DETECTION returns the handle to a new TRAFFIC_SIGN_DETECTION or the handle to
% the existing singleton*.
%
% TRAFFIC_SIGN_DETECTION('CALLBACK',hObject,eventData,handles,...) calls the local
% function named CALLBACK in TRAFFIC_SIGN_DETECTION.M with the given input arguments.
%
% TRAFFIC_SIGN_DETECTION('Property','Value',...) creates a new TRAFFIC_SIGN_DETECTION or raises the
% existing singleton*. Starting from the left, property value pairs are
% applied to the GUI before traffic_sign_detection_OpeningFcn gets called. An
% unrecognized property name or invalid value makes property application
% stop. All inputs are passed to traffic_sign_detection_OpeningFcn via varargin.
%
% *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one
% instance to run (singleton)".
%
% See also: GUIDE, GUIDATA, GUIHANDLES
% Edit the above text to modify the response to help traffic_sign_detection
% Last Modified by GUIDE v2.5 25-Feb-2020 14:13:17
% Begin initialization code - DO NOT EDIT
gui_Singleton = 1;
gui_State = struct('gui_Name', mfilename, ...
'gui_Singleton', gui_Singleton, ...
'gui_OpeningFcn', @traffic_sign_detection_OpeningFcn, ...
'gui_OutputFcn', @traffic_sign_detection_OutputFcn, ...
'gui_LayoutFcn', [] , ...
'gui_Callback', []);
if nargin && ischar(varargin{1})
gui_State.gui_Callback = str2func(varargin{1});
end
if nargout
[varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});
else
gui_mainfcn(gui_State, varargin{:});
end
% End initialization code - DO NOT EDIT
% --- Executes just before traffic_sign_detection is made visible.
function traffic_sign_detection_OpeningFcn(hObject, eventdata, handles, varargin)
% This function has no output args, see OutputFcn.
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% varargin command line arguments to traffic_sign_detection (see VARARGIN)
% Choose default command line output for traffic_sign_detection
handles.output = hObject;
% Update handles structure
guidata(hObject, handles);
% UIWAIT makes traffic_sign_detection wait for user response (see UIRESUME)
% uiwait(handles.figure1);
% --- Outputs from this function are returned to the command line.
function varargout = traffic_sign_detection_OutputFcn(hObject, eventdata, handles)
% varargout cell array for returning output args (see VARARGOUT);
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Get default command line output from handles structure
varargout{1} = handles.output;
% --- Executes on button press in detect_button.
function detect_button_Callback(hObject, eventdata, handles)
% hObject handle to detect_button (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Load the traffic sign dataset
load('trafficSigns.mat', 'trainData', 'testData', 'trainLabels', 'testLabels');
% Display some of the training images
figure;
perm = randperm(size(trainData, 4), 20);
for i = 1:20
subplot(4, 5, i);
imshow(trainData(:, :, :, perm(i)));
end
% Extract HOG features from the training images
cellSize = [8 8];
hogFeatureSize = length(hog_4x4(ones(cellSize * 2)));
hogFeatureSize = length(hog_4x4(ones(cellSize * 2, 'uint8')));
numImages = size(trainData, 4);
hogFeatures = zeros(numImages, hogFeatureSize, 'single');
for i = 1:numImages
hogFeatures(i, :) = extractHOGFeatures(trainData(:, :, :, i), 'CellSize', cellSize);
end
% Train a classifier using the extracted HOG features
% SVM classifier
classifier = fitcecoc(hogFeatures, trainLabels);
% Read the input image
[file,path] = uigetfile({'*.jpg';'*.jpeg';'*.png';'*.gif'}, 'Select an image');
if ~isequal(file, 0)
img = imread(fullfile(path,file));
axes(handles.input_image);
imshow(img);
else
return;
end
% Preprocess the input image
img = imresize(img, [32 32]);
grayimg = rgb2gray(img);
level = graythresh(grayimg);
bwimg = ~im2bw(grayimg, level);
bwimg = bwareaopen(bwimg, 30);
se = strel('disk', 2);
bwimg = imclose(bwimg, se);
bwimg = imfill(bwimg, 'holes');
axes(handles.processed_image);
imshow(bwimg);
% Extract HOG features from the input image
hogFeatureSize = length(hog_4x4(ones(cellSize * 2)));
hogFeatureSize = length(hog_4x4(ones(cellSize * 2, 'uint8')));
hogFeatures = extractHOGFeatures(bwimg, 'CellSize', cellSize);
% Predict the class of the input image
predictedLabel = predict(classifier, hogFeatures);
axes(handles.output_image);
imshow(img);
title(sprintf('Predicted Sign: %d', predictedLabel));
% --- Executes on button press in clear_button.
function clear_button_Callback(hObject, eventdata, handles)
% hObject handle to clear_button (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
cla(handles.input_image,'reset');
cla(handles.processed_image,'reset');
cla(handles.output_image,'reset');
```
此代码需要依赖于 `trafficSigns.mat` 数据集和 `extractHOGFeatures` 函数。此外,还需要将图形用户界面文件 `traffic_sign_detection.fig` 与此代码一起使用。
您可以在 MathWorks 网站上找到 `trafficSigns.mat` 数据集和 `extractHOGFeatures` 函数。另外,您也可以尝试使用其他数据集和特征提取方法。
基于MATLAB交通标志识别系统写一个代码
在MATLAB中编写一个简单的交通标志识别系统需要几个关键步骤,这里提供一个概述性的框架,假设我们使用的是计算机视觉技术和机器学习算法。由于实际代码长度会比较长,这里仅给出基础框架:
```matlab
% 导入所需库和工具箱
addpath('visionworks'); % 如果有特定的图像处理库
import matlab imageDatastore; % 数据读取和预处理
% 1. 数据准备
% 创建ImageDatastore加载训练图片和对应的标签
imds = imageDatastore('traffic_signs_dataset', 'IncludeSubfolders', true);
% 划分数据集(例如80%训练,20%测试)
[imdsTrain, imdsTest] = splitEachLabel(imds, 0.8);
% 2. 图像预处理
% 使用imageDatastore的preprocessFcn对图片进行大小调整、归一化等操作
imdsTrain = augmentedImageDatastore([64, 64], imdsTrain, 'ColorPreprocessing', 'gray2rgb');
imdsTest = augmentedImageDatastore([64, 64], imdsTest, 'ColorPreprocessing', 'gray2rgb');
% 3. 特征提取
featureExtractor = vision.VGG16Layer('FullyConnected Layers', 'fc7'); % VGG16特征提取层
featsTrain = activations(featureExtractor, imdsTrain);
featsTest = activations(featureExtractor, imdsTest);
% 4. 训练分类器
classifier = trainNetwork(featsTrain, imdsTrain.Labels, 'SVM','L2Loss', 'MiniBatchSize', 32); % SVM作为示例分类器
% 5. 测试和识别
predictions = classify(classifier, featsTest);
accuracy = mean(predictions == imdsTest.Labels);
% 6. 识别新图片
% 加载一张待识别的图片
newImage = imread('test_image.jpg');
% 对新图片进行预处理并提取特征
newFeats = activations(featureExtractor, newImage);
% 进行预测
predictedSign = predict(classifier, newFeats);
% 结果显示和保存
disp(['Predicted sign: ', char(predictedSign)]);
```
这个例子是一个简化的流程,实际项目可能包括更复杂的模型如卷积神经网络(CNN)、数据增强、迁移学习等。注意,这只是一个基础教程级别的代码,真实应用可能需要大量的数据清理和模型优化。
阅读全文