matlab已知协方差矩阵,求主成分
时间: 2023-07-13 16:05:00 浏览: 283
可以使用MATLAB自带的函数`pca()`来求解。`pca()`函数可以接收一个数据矩阵作为输入,并返回主成分分析的结果,包括每个主成分的权重、得分、方差和方差贡献率等信息。
具体步骤如下:
1.准备数据矩阵。假设我们有一个m×n的数据矩阵X,其中每一行代表一个样本,每一列代表一个变量。
2.计算协方差矩阵C。可以使用MATLAB自带的函数`cov()`来计算协方差矩阵。
3.调用`pca()`函数进行主成分分析。可以使用以下语句进行调用:
```
[coeff,score,latent,tsquared,explained] = pca(X);
```
其中,`coeff`是主成分系数矩阵,每一列代表一个主成分;`score`是得分矩阵,每一行代表一个样本在主成分上的投影;`latent`是主成分的方差,按降序排列;`explained`是方差贡献率,按降序排列。
4.选择前k个主成分。可以根据主成分的方差或方差贡献率来选择前k个主成分。
完整代码示例:
```
% 准备数据矩阵
X = randn(100,5);
% 计算协方差矩阵
C = cov(X);
% 进行主成分分析
[coeff,score,latent,tsquared,explained] = pca(X);
% 选择前2个主成分
k = 2;
coeff = coeff(:,1:k);
score = score(:,1:k);
```
在上述代码中,我们生成了一个100×5的随机数据矩阵X,然后计算其协方差矩阵C,并使用`pca()`函数进行主成分分析。最后,我们选择了前2个主成分。
阅读全文
相关推荐


















