def freq_domain_loss(s_hat, gt_spec, combination=True):n_src = len(s_hat) idx_list = [i for i in range(n_src)] inferences = [] refrences = [] for i, s in enumerate(s_hat): inferences.append(s) refrences.append(gt_spec[..., 2 * i : 2 * i + 2, :]) assert inferences[0].shape == refrences[0].shape _loss_mse = 0.0 cnt = 0.0 for i in range(n_src): _loss_mse += singlesrc_mse(inferences[i], refrences[i]).mean() cnt += 1.0 # If Combination is True, calculate the expected combinations. if combination: for c in range(2, n_src): patterns = list(itertools.combinations(idx_list, c)) for indices in patterns: tmp_loss = singlesrc_mse( sum(itemgetter(*indices)(inferences)), sum(itemgetter(*indices)(refrences)), ).mean() _loss_mse += tmp_loss cnt += 1.0 _loss_mse /= cnt return _loss_mse
时间: 2024-02-14 14:22:42 浏览: 56
freq_cnt.rar_ freq_cnt_FPGA pulse_脉宽
这个函数实现了一个频域损失函数,用于衡量音频信号重构的准确度。它的输入参数包括一个音频信号的估计值 s_hat 和对应的参考值 gt_spec,以及一个布尔值 combination,用于指定是否考虑多个信号源的情况。如果 combination 为 True,则会计算所有可能的信号源组合情况下的损失值,否则只计算单个信号源的损失值。该函数首先将输入的 s_hat 和 gt_spec 分别按照源数量进行拆分,然后分别计算每个源信号与其参考信号之间的均方误差(MSE)并累加起来。如果 combination 为 True,则还会计算所有可能的源信号组合情况下的 MSE 并进行累加。最后,函数将累加后的 MSE 值除以源数量得到平均值,并将其作为输出返回。
阅读全文