def freq_domain_loss(s_hat, gt_spec, combination=True):n_src = len(s_hat) idx_list = [i for i in range(n_src)] inferences = [] refrences = [] for i, s in enumerate(s_hat): inferences.append(s) refrences.append(gt_spec[..., 2 * i : 2 * i + 2, :]) assert inferences[0].shape == refrences[0].shape _loss_mse = 0.0 cnt = 0.0 for i in range(n_src): _loss_mse += singlesrc_mse(inferences[i], refrences[i]).mean() cnt += 1.0 # If Combination is True, calculate the expected combinations. if combination: for c in range(2, n_src): patterns = list(itertools.combinations(idx_list, c)) for indices in patterns: tmp_loss = singlesrc_mse( sum(itemgetter(*indices)(inferences)), sum(itemgetter(*indices)(refrences)), ).mean() _loss_mse += tmp_loss cnt += 1.0 _loss_mse /= cnt return _loss_mse
时间: 2024-02-14 12:22:42 浏览: 63
这个函数实现了一个频域损失函数,用于衡量音频信号重构的准确度。它的输入参数包括一个音频信号的估计值 s_hat 和对应的参考值 gt_spec,以及一个布尔值 combination,用于指定是否考虑多个信号源的情况。如果 combination 为 True,则会计算所有可能的信号源组合情况下的损失值,否则只计算单个信号源的损失值。该函数首先将输入的 s_hat 和 gt_spec 分别按照源数量进行拆分,然后分别计算每个源信号与其参考信号之间的均方误差(MSE)并累加起来。如果 combination 为 True,则还会计算所有可能的源信号组合情况下的 MSE 并进行累加。最后,函数将累加后的 MSE 值除以源数量得到平均值,并将其作为输出返回。
相关问题
import pandas as pd from itertools import combinations # 读取数据集 data = pd.read_csv('groceries.csv', header=None) transactions = data.values.tolist() # 设定支持度和置信度的阈值 min_support = 0.01 min_confidence = 0.5 # 生成频繁1项集 item_count = {} for transaction in transactions: for item in transaction: if item in item_count: item_count[item] += 1 else: item_count[item] = 1 num_transactions = len(transactions) freq_1_itemsets = [] for item, count in item_count.items(): support = count / num_transactions if support >= min_support: freq_1_itemsets.append([item]) # 生成频繁项集和关联规则 freq_itemsets = freq_1_itemsets[:] for k in range(2, len(freq_1_itemsets) + 1): candidates = [] for itemset in freq_itemsets: for item in freq_1_itemsets: if item[0] not in itemset: candidate = itemset + item if candidate not in candidates: candidates.append(candidate) freq_itemsets_k = [] for candidate in candidates: count = 0 for transaction in transactions: if set(candidate).issubset(set(transaction)): count += 1 support = count / num_transactions if support >= min_support: freq_itemsets_k.append(candidate) freq_itemsets += freq_itemsets_k # 生成关联规则 for itemset in freq_itemsets_k: for i in range(1, len(itemset)): for subset in combinations(itemset, i): antecedent = list(subset) consequent = list(set(itemset) - set(subset)) support_antecedent = item_count[antecedent[0]] / num_transactions for item in antecedent[1:]: support_antecedent = min(support_antecedent, item_count[item] / num_transactions) confidence = count / (support_antecedent * num_transactions) if confidence >= min_confidence: print(antecedent, '->', consequent, ':', confidence)完善这段代码
这这是这是Python这是Python的这是Python的代码这是Python的代码,这是Python的代码,用这是Python的代码,用于这是Python的代码,用于导这是Python的代码,用于导入这是Python的代码,用于导入p这是Python的代码,用于导入pandas这是Python的代码,用于导入pandas库这是Python的代码,用于导入pandas库,并这是Python的代码,用于导入pandas库,并从这是Python的代码,用于导入pandas库,并从it这是Python的代码,用于导入pandas库,并从itertools这是Python的代码,用于导入pandas库,并从itertools库这是Python的代码,用于导入pandas库,并从itertools库中这是Python的代码,用于导入pandas库,并从itertools库中导这是Python的代码,用于导入pandas库,并从itertools库中导入这是Python的代码,用于导入pandas库,并从itertools库中导入com这是Python的代码,用于导入pandas库,并从itertools库中导入combinations这是Python的代码,用于导入pandas库,并从itertools库中导入combinations函数这是Python的代码,用于导入pandas库,并从itertools库中导入combinations函数。
def tokenize_nmt(lines, token='word'): """词元化“英语-汉语”数据数据集""" # def tokenize(lines, token='word'): #@save """将文本行拆分为单词或字符词元""" if token == 'word': return [line.split() for line in lines] elif token == 'char': return [list(line) for line in lines] else: print('错误:未知词元类型:' .format(token)) source, target = tokenize_nmt(text) source[:6], target[:6] def load_data_nmt(batch_size, num_steps, num_examples=600): """返回翻译数据集的迭代器和词表""" text = preprocess_nmt(read_data_nmt()) source, target = tokenize_nmt(text, num_examples) src_vocab = d2l.Vocab(source, min_freq=2, reserved_tokens=['<pad>', '<bos>', '<eos>']) tgt_vocab = d2l.Vocab(target, min_freq=2, reserved_tokens=['<pad>', '<bos>', '<eos>']) src_array, src_valid_len = build_array_nmt(source, src_vocab, num_steps) tgt_array, tgt_valid_len = build_array_nmt(target, tgt_vocab, num_steps) data_arrays = (src_array, src_valid_len, tgt_array, tgt_valid_len) data_iter = d2l.load_array(data_arrays, batch_size) return data_iter, src_vocab, tgt_vocab train_iter, src_vocab, tgt_vocab = load_data_nmt(batch_size=2, num_steps=8) for X, X_valid_len, Y, Y_valid_len in train_iter: print('X:', X.type(torch.int32)) print('X的有效长度:', X_valid_len) print('Y:', Y.type(torch.int32)) print('Y的有效长度:', Y_valid_len) break TypeError: cannot unpack non-iterable NoneType object
这段代码出现了错误,具体错误信息是:TypeError: cannot unpack non-iterable NoneType object。这个错误通常表示一个函数返回了空值(None),而在接收这个函数返回值的地方却试图对其进行解包操作。在这个例子中,可能是在load_data_nmt这个函数中,build_array_nmt函数返回了空值,导致整个load_data_nmt函数返回了None。你可以检查一下build_array_nmt这个函数是否正常运行,或者在load_data_nmt函数中添加一些调试信息来定位问题所在。
阅读全文