1.ID3 算法实现。 (1)编写代码计算信息增益 (2)用 python 编写 ID3 算法。
时间: 2024-12-29 22:35:06 浏览: 14
ID3算法是一种基于信息熵的决策树生成算法。首先,我们来看看如何编写计算信息增益的代码:
```python
import math
def entropy(labels):
"""
计算给定标签列表的熵
"""
freqs = {label: labels.count(label) / len(labels) for label in set(labels)}
return -sum(freq * math.log2(freq) for freq in freqs.values())
def information_gain(node_entropy, split_attribute, values):
"""
计算将节点分割后的信息增益
node_entropy: 当前节点的熵
split_attribute: 要分割的属性
values: 属性的可能取值
"""
gain = node_entropy
for value in values:
sub_labels = [label for label in labels if getattr(data, split_attribute) == value]
p = len(sub_labels) / len(labels)
gain -= p * entropy(sub_labels)
return gain
```
接下来是基本的ID3算法实现:
```python
class ID3Node:
def __init__(self, feature=None, value=None, labels=None, is_leaf=True):
self.feature = feature
self.value = value
self.labels = labels or []
self.is_leaf = is_leaf
def id3(data, features, target, current_depth=0, max_depth=None):
"""
ID3算法的主要部分
data: 样本数据
features: 可选特征列表
target: 目标变量名
current_depth: 当前节点深度
max_depth: 最大深度限制(可选)
"""
if not features or (max_depth and current_depth >= max_depth): # 到达叶子节点或者无更多特征可用
return ID3Node(is_leaf=True, labels={data[target]})
best_gain = 0
best_feature = None
remaining_features = list(features)
for feature in remaining_features:
gains = [information_gain(entropy(data[target]), feature, data[feature].unique()) for _ in range(len(features))]
if max(gains) > best_gain:
best_gain = max(gains)
best_feature = feature
if best_gain == 0: # 如果所有增益都为零,说明数据纯度已达到,返回当前状态作为叶节点
return ID3Node(is_leaf=True, labels=data[target].value_counts().keys())
subtree = id3(data, remaining_features, target, current_depth + 1, max_depth)
return ID3Node(best_feature, data[best_feature].unique(), {}, True, subtree)
```
请注意,这个简化版的ID3算法仅适用于离散特征,如果数据包含连续特征,需要稍微修改计算信息增益的部分。此外,实际应用中可能还需要处理缺失值、停止单纯等条件。
阅读全文