zemax显示追击光线不同路径的字符串

时间: 2023-06-16 17:06:16 浏览: 126
在 Zemax 中,您可以使用以下命令来显示追踪光线的不同路径: 1. 打开 Lens Data Editor。 2. 在“Sequential”选项卡下,选择“Trace”选项。 3. 在“Trace”选项卡下,选择“String”选项。 4. 选择要显示的光线追踪路径。 5. 单击“Trace”按钮以追踪光线并显示路径字符串。 注意:在启用路径字符串之前,您需要确保在光学系统中已经设置了适当的表面属性和光源。
相关问题

zemax非序列模式光线追击字符串

Zemax中非序列模式下光线追迹的字符串为: ``` ! Zemax non-sequential mode ! This file is written in Zemax's Programming Language (ZPL) ! Define the light source LDE // Add the light source SOURCE, POS=0,0,0, DIR=0,0,1, WAVE=0.550, POL=0,0,1, INTEN=1, FILE="" // Add the object OBJECT, POS=0,0,10, TYPE=0, RX=10, RY=10, RZ=10, FILE="" // Add the detector DETECTOR, POS=0,0,20, DIR=0,0,-1, APERTURE=1, XSIZE=256, YSIZE=256, FILE="" // Trace rays TRACE, RAYS=10000, START=1, SEED=1, ANALYSIS=0, SYSTEM=0 ``` 其中,`LDE` 表示非序列模式(non-sequential mode)下的光路编辑器(Lens Data Editor)。`SOURCE` 定义光源的位置、方向、波长、偏振等参数。`OBJECT` 定义物体的位置和形状。`DETECTOR` 定义探测器的位置、方向、孔径大小和像素数量等参数。`TRACE` 命令指定光线追迹的参数,如光线数量、起点、随机数种子等。

zemax非序列模式字符串字符串

Zemax 非序列模式字符串是用于描述光学系统中光路的字符串,其中包含了各种光学元件的参数。这些非序列模式字符串通常是由 Zemax 软件生成的,以便用户可以直接将其复制到 Zemax 的编辑器中来快速构建光学系统。 非序列模式字符串的格式如下: ``` <元件类型>,<参数1>=<值1>,<参数2>=<值2>,... ``` 其中, `<元件类型>` 表示光学元件的类型,如透镜、棱镜等; `<参数>` 和 `<值>` 则是该元件的具体参数,如曲率半径、厚度等。不同类型的元件有不同的参数,具体可以参考 Zemax 的官方文档。 举个例子,下面是一个非序列模式字符串,表示一个凸透镜: ``` LENS,Radius=10,Thickness=5,Diameter=20,Material=SF11 ``` 其中,元件类型为 `LENS`,表示透镜; `Radius` 表示透镜的曲率半径为 10mm; `Thickness` 表示透镜的厚度为 5mm; `Diameter` 表示透镜的直径为 20mm; `Material` 表示透镜的材料为 SF11。

相关推荐

最新推荐

recommend-type

Zemax仿真笔记-source diode篇.docx

Zemax是一款强大的光学系统设计和分析工具,其中的source diode功能允许用户模拟不同类型的二极管光源,以研究其在光学系统中的行为。 首先,我们关注到几个关键参数: 1. **Lay out Rays**:这是指在仿真中用于...
recommend-type

VR透镜Zemax设计仿真

本文将以"VR透镜Zemax设计仿真"为主题,详细讲解如何利用Zemax进行VR光学设计,并对设计结果进行分析。 首先,我们要理解VR透镜的基本设计原理。VR透镜的主要目标是将LCD显示屏的图像放大,形成一个适合人眼观察的...
recommend-type

Zemax中三种优化方法.doc

总的来说,ZEMAX的这三种优化方法为光学设计师提供了灵活的工具,帮助他们应对不同复杂度的光学系统设计问题,从初始设计到最终优化,确保得到最佳的光学性能。在实际操作中,结合各种优化策略的使用,可以更有效地...
recommend-type

zemax模拟FP法布里珀罗腔

在Zemax中,用户可以选择感兴趣的波长范围,以研究腔体在不同颜色下的行为。 4. 镜头参数:包括焦距、曲率半径、折射率等,这些参数影响光在腔内的传播和反射。 在Zemax中,添加FP膜层是通过"Coat FP"功能实现的。...
recommend-type

zemax优化函数结构浅探

ZEMAX 优化函数结构浅探 ZEMAX 软件的优化函数结构是一个复杂的系统,它由多个优化元组成,每个优化元都有其自己的权重系数和目标值。这些优化元可以是光学特性参数,如焦距、入瞳距离、成像尺寸、物高、物距、镜片...
recommend-type

十种常见电感线圈电感量计算公式详解

本文档详细介绍了十种常见的电感线圈电感量的计算方法,这对于开关电源电路设计和实验中的参数调整至关重要。计算方法涉及了圆截面直导线、同轴电缆线、双线制传输线、两平行直导线间的互感以及圆环的电感。以下是每种类型的电感计算公式及其适用条件: 1. **圆截面直导线的电感** - 公式:\( L = \frac{\mu_0 l}{2\pi r} \) (在 \( l >> r \) 的条件下) - \( l \) 表示导线长度,\( r \) 表示导线半径,\( \mu_0 \) 是真空导磁率。 2. **同轴电缆线的电感** - 公式:\( L = \frac{\mu_0 l}{2\pi (r1 + r2)} \) (忽略外导体厚度) - \( r1 \) 和 \( r2 \) 分别为内外导体直径。 3. **双线制传输线的电感** - 公式:\( L = \frac{\mu_0 l}{2\pi^2 D \ln(\frac{D+r}{r})} \) (条件:\( l >> D, D >> r \)) - \( D \) 是两导线间距离。 4. **两平行直导线的互感** - 公式:\( M = \frac{\mu_0 l}{2\pi r} \ln(\frac{D}{d}) \) (条件:\( D >> r \)) - \( d \) 是单个导线半径,互感与距离 \( D \) 有关。 5. **圆环的电感** - 公式:\( L = \mu_0 R \ln(\frac{R}{r}) \) - \( R \) 是圆环的外半径,\( r \) 是圆环截面的半径。 在电路设计中,计算这些电感值有助于确保电路性能的准确性和稳定性。值得注意的是,实际应用中还需要考虑线圈的形状、材料(包括磁芯的相对导磁率)和外部因素,如磁珠的影响。此外,这些公式通常是在理想化情况下给出的,实际应用中可能需要考虑非线性效应和频率依赖性。对于复杂线圈,可能需要借助于电磁场仿真软件进行精确计算。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【树结构遍历操作】:JavaScript深度优先与广度优先算法详解

![js+数据结构更改](https://www.freecodecamp.org/news/content/images/2021/04/JavaScript-splice-method.png) # 1. 树结构遍历操作概述 在计算机科学中,树结构是表示数据的一种重要方式,尤其在处理层次化数据时显得尤为重要。树结构遍历操作是树上的核心算法,它允许我们访问树中每一个节点一次。这种操作广泛应用于搜索、排序、以及各种优化问题中。本章将概览树结构遍历的基本概念、方法和实际应用场景。 ## 1.1 树结构的定义与特性 树是由一个集合作为节点和一组连接这些节点的边构成的图。在树结构中,有一个特殊
recommend-type

年份是否为闰年C语言判断

在C语言中,判断一个年份是否为闰年的标准有以下几个规则: 1. **普通闰年**:能被4整除但不能被100整除的年份是普通闰年,如2004年就是闰年。 2. **世纪闰年**:能被400整除的年份也是闰年,但如果是整百数(例如1900年),则需要满足能被400整除才能是闰年。 下面是简单的C语言函数来判断一个年份是否是闰年: ```c #include <stdbool.h> bool is_leap_year(int year) { if (year % 4 != 0) { // 如果不是4的倍数,则直接返回false return false; }
recommend-type

军用车辆:CAN总线的集成与优势

本文探讨了CAN总线在军用车辆中的应用,针对军用车辆电子系统的发展趋势和需求,着重分析了将CAN总线技术引入军用车辆的必要性和可行性。军用车辆的电子化程度日益提高,电子设备的集成和资源共享成为关键,以提升整体性能和作战效能。CAN总线(Controller Area Network)作为一种成功的民用汽车通信技术,因其模块化、标准化、小型化以及高效能的特点,被提出作为军用车辆的潜在解决方案。 首先,文章指出军用车辆的数据通信需求不同于一般计算机网络,它强调实时性、可靠性、短帧信息传输、频繁的信息交换以及高安全性。CAN总线正好满足这些特殊要求,它支持多主机通信模式,允许灵活的数据交换,并且具有固定的报文格式,这在满足军用车辆实时和高效的数据处理中具有优势。 对比了CAN总线与传统的军用通信标准1553B后,文中强调了CAN总线在可靠性方面的明显优势,尤其是在复杂环境和高负载情况下,其容错能力和故障自愈能力使其在军用车辆中的应用更具吸引力。此外,CAN总线的成本效益也是其在军用领域得到广泛应用的一个重要因素。 文章详细介绍了CAN总线的工作原理和特点,比如它的仲裁机制能够有效管理多个节点间的通信,避免冲突,同时其低数据速率适合于军用车辆的实时通信需求。在介绍完CAN总线的优势后,文章还可能探讨了实际应用中的挑战,如如何确保网络的安全性、如何进行有效的系统集成等问题,以及如何通过研发和优化来克服这些挑战。 本文通过对CAN总线特性的深入剖析,证明了将其应用于军用车辆是切实可行且具有重大意义的,为军用车辆电子系统的现代化和成本效益最大化提供了新的思路和技术路径。