transformers 库进行图像分割的例子
时间: 2023-10-18 21:16:54 浏览: 179
以下是使用 transformers 库进行图像分割的例子:
1. 安装必要的库和模块:
```
!pip install transformers
!pip install torch torchvision
```
2. 导入必要的库和模块:
```
import torch
import torchvision
import matplotlib.pyplot as plt
from transformers import ViTFeatureExtractor, ViTForImageSegmentation
```
3. 加载数据集:
```
transform = torchvision.transforms.Compose([
torchvision.transforms.Resize((224, 224)),
torchvision.transforms.ToTensor(),
])
train_dataset = torchvision.datasets.CocoDetection(
root='./data/train2017',
annFile='./data/annotations/instances_train2017.json',
transform=transform
)
test_dataset = torchvision.datasets.CocoDetection(
root='./data/val2017',
annFile='./data/annotations/instances_val2017.json',
transform=transform
)
```
4. 加载模型和特征提取器:
```
feature_extractor = ViTFeatureExtractor.from_pretrained('google/vit-base-patch16-224')
model = ViTForImageSegmentation.from_pretrained('google/vit-base-patch16-224')
```
5. 定义训练函数:
```
def train(model, train_dataloader, optimizer, criterion, device):
model.train()
train_loss = 0
for i, (inputs, targets) in enumerate(train_dataloader):
inputs = inputs.to(device)
targets = targets.to(device)
optimizer.zero_grad()
outputs = model(inputs)
loss = criterion(outputs, targets)
loss.backward()
optimizer.step()
train_loss += loss.item()
return train_loss / len(train_dataloader)
```
6. 定义测试函数:
```
def test(model, test_dataloader, criterion, device):
model.eval()
test_loss = 0
with torch.no_grad():
for i, (inputs, targets) in enumerate(test_dataloader):
inputs = inputs.to(device)
targets = targets.to(device)
outputs = model(inputs)
loss = criterion(outputs, targets)
test_loss += loss.item()
return test_loss / len(test_dataloader)
```
7. 训练模型:
```
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model.to(device)
optimizer = torch.optim.Adam(model.parameters(), lr=1e-4)
criterion = torch.nn.CrossEntropyLoss()
train_dataloader = torch.utils.data.DataLoader(train_dataset, batch_size=16, shuffle=True)
test_dataloader = torch.utils.data.DataLoader(test_dataset, batch_size=16, shuffle=False)
num_epochs = 10
train_losses = []
test_losses = []
for epoch in range(num_epochs):
train_loss = train(model, train_dataloader, optimizer, criterion, device)
test_loss = test(model, test_dataloader, criterion, device)
train_losses.append(train_loss)
test_losses.append(test_loss)
print(f'Epoch {epoch+1}/{num_epochs}, Train Loss: {train_loss:.4f}, Test Loss: {test_loss:.4f}')
plt.plot(train_losses, label='Train Loss')
plt.plot(test_losses, label='Test Loss')
plt.legend()
plt.show()
```
8. 对单个图像进行预测:
```
image = torchvision.io.read_image('image.jpg')
inputs = transform(image).unsqueeze(0).to(device)
outputs = model(inputs)
segmentation_map = torch.argmax(outputs, dim=1).squeeze().cpu().numpy()
plt.imshow(segmentation_map)
plt.show()
```
以上是使用 transformers 库进行图像分割的例子,其中使用了 ViT 模型和 COCO 数据集。
阅读全文