小波神经网络预测python代码举例
时间: 2024-09-07 19:01:21 浏览: 56
小波神经网络预测代码 小波神经网络预测代码
5星 · 资源好评率100%
小波神经网络(Wavelet Neural Network,WNN)是一种结合了小波分析和神经网络技术的模型,常用于信号处理、时间序列预测等领域。以下是使用Python和PyTorch库实现小波神经网络的一个简单示例:
```python
# 首先,需要安装必要的库
import numpy as np
import torch
from torch import nn
from pywt import wavedec, waverec
class WaveletLayer(nn.Module):
def __init__(self, wavelet='db4', level=4):
super(WaveletLayer, self).__init__()
self.wavelet = wavelet
self.level = level
def forward(self, x):
# 使用pywt工具包的小波分解
coeffs = wavedec(x, wavelet=self.wavelet, level=self.level)
return coeffs
class WNN(nn.Module):
def __init__(self, input_size, hidden_layers, output_size):
super(WNN, self).__init__()
# 添加小波层
self.wavelet_layer = WaveletLayer()
# 创建隐藏层
self.hidden_layers = nn.ModuleList([nn.Linear(input_size + len(coeffs), hidden_layers) for coeffs in range(0, len(hidden_layers))])
self.output_layer = nn.Linear(hidden_layers[-1], output_size)
def forward(self, x):
# 分解输入并传递给隐藏层
coeffs = self.wavelet_layer(x)
coefficients = [coeffs]
for layer in self.hidden_layers:
flattened_coeffs = torch.cat((coeffs[0], *coeffs[1:]), dim=-1)
coeffs = [layer(flattened_coeffs)]
# 合成预测
output = self.output_layer(torch.flatten(coeffs[-1], start_dim=1))
return output
# 示例使用
input_size = 100 # 输入数据维度
hidden_layers = [64, 32] # 每个隐藏层的节点数
output_size = 1 # 输出的预测值维度
model = WNN(input_size, hidden_layers, output_size)
# 假设我们有训练数据x_train和对应的标签y_train
# train_loader是一个数据加载器
for x_batch, y_batch in train_loader:
# 预测
pred = model(x_batch)
# 训练模型...
```
注意,这只是一个简化示例,实际应用中还需要配合损失函数、优化器以及训练循环。此外,对于时间序列预测,可能还需处理窗口滑动的问题。
阅读全文