resnet-50实现代码
时间: 2023-04-03 09:03:17 浏览: 133
以下是 ResNet-50 的实现代码:
```python
import tensorflow as tf
def identity_block(X, f, filters, stage, block):
"""
实现恒等块
参数:
X -- 输入的张量,维度为 (m, n_H_prev, n_W_prev, n_C_prev)
f -- 整数,指定主路径中间的卷积窗口的形状
filters -- 整数列表,定义了主路径中每层的卷积层的过滤器数量
stage -- 整数,用于命名层,取决于它们在网络中的位置
block -- 字符串/整数,用于命名层,取决于它们在网络中的位置
返回:
X -- 恒等块的输出,维度为:(n_H, n_W, n_C)
"""
# 定义命名规则
conv_name_base = 'res' + str(stage) + block + '_branch'
bn_name_base = 'bn' + str(stage) + block + '_branch'
# 获取过滤器
F1, F2, F3 = filters
# 保存输入数据,将会用于为主路径添加捷径
X_shortcut = X
# 主路径的第一部分
X = tf.keras.layers.Conv2D(filters=F1, kernel_size=(1, 1), strides=(1, 1), padding='valid', name=conv_name_base + '2a', kernel_initializer=tf.keras.initializers.glorot_uniform(seed=0))(X)
X = tf.keras.layers.BatchNormalization(axis=3, name=bn_name_base + '2a')(X)
X = tf.keras.layers.Activation('relu')(X)
# 主路径的第二部分
X = tf.keras.layers.Conv2D(filters=F2, kernel_size=(f, f), strides=(1, 1), padding='same', name=conv_name_base + '2b', kernel_initializer=tf.keras.initializers.glorot_uniform(seed=0))(X)
X = tf.keras.layers.BatchNormalization(axis=3, name=bn_name_base + '2b')(X)
X = tf.keras.layers.Activation('relu')(X)
# 主路径的第三部分
X = tf.keras.layers.Conv2D(filters=F3, kernel_size=(1, 1), strides=(1, 1), padding='valid', name=conv_name_base + '2c', kernel_initializer=tf.keras.initializers.glorot_uniform(seed=0))(X)
X = tf.keras.layers.BatchNormalization(axis=3, name=bn_name_base + '2c')(X)
# 主路径添加捷径
X = tf.keras.layers.Add()([X, X_shortcut])
X = tf.keras.layers.Activation('relu')(X)
return X
def convolutional_block(X, f, filters, stage, block, s=2):
"""
实现卷积块
参数:
X -- 输入的张量,维度为 (m, n_H_prev, n_W_prev, n_C_prev)
f -- 整数,指定主路径中间的卷积窗口的形状
filters -- 整数列表,定义了主路径中每层的卷积层的过滤器数量
stage -- 整数,用于命名层,取决于它们在网络中的位置
block -- 字符串/整数,用于命名层,取决于它们在网络中的位置
s -- 整数,指定要使用的步幅
返回:
X -- 卷积块的输出,维度为:(n_H, n_W, n_C)
"""
# 定义命名规则
conv_name_base = 'res' + str(stage) + block + '_branch'
bn_name_base = 'bn' + str(stage) + block + '_branch'
# 获取过滤器
F1, F2, F3 = filters
# 保存输入数据,将会用于为主路径添加捷径
X_shortcut = X
# 主路径的第一部分
X = tf.keras.layers.Conv2D(filters=F1, kernel_size=(1, 1), strides=(s, s), padding='valid', name=conv_name_base + '2a', kernel_initializer=tf.keras.initializers.glorot_uniform(seed=0))(X)
X = tf.keras.layers.BatchNormalization(axis=3, name=bn_name_base + '2a')(X)
X = tf.keras.layers.Activation('relu')(X)
# 主路径的第二部分
X = tf.keras.layers.Conv2D(filters=F2, kernel_size=(f, f), strides=(1, 1), padding='same', name=conv_name_base + '2b', kernel_initializer=tf.keras.initializers.glorot_uniform(seed=0))(X)
X = tf.keras.layers.BatchNormalization(axis=3, name=bn_name_base + '2b')(X)
X = tf.keras.layers.Activation('relu')(X)
# 主路径的第三部分
X = tf.keras.layers.Conv2D(filters=F3, kernel_size=(1, 1), strides=(1, 1), padding='valid', name=conv_name_base + '2c', kernel_initializer=tf.keras.initializers.glorot_uniform(seed=0))(X)
X = tf.keras.layers.BatchNormalization(axis=3, name=bn_name_base + '2c')(X)
# 捷径路径
X_shortcut = tf.keras.layers.Conv2D(filters=F3, kernel_size=(1, 1), strides=(s, s), padding='valid', name=conv_name_base + '1', kernel_initializer=tf.keras.initializers.glorot_uniform(seed=0))(X_shortcut)
X_shortcut = tf.keras.layers.BatchNormalization(axis=3, name=bn_name_base + '1')(X_shortcut)
# 主路径添加捷径
X = tf.keras.layers.Add()([X, X_shortcut])
X = tf.keras.layers.Activation('relu')(X)
return X
def ResNet50(input_shape=(64, 64, 3), classes=6):
"""
实现 ResNet-50
参数:
input_shape -- 输入的图像的维度
classes -- 整数,分类数
返回:
model -- Keras 模型实例
"""
# 定义输入作为 Keras 张量
X_input = tf.keras.layers.Input(input_shape)
# 零填充
X = tf.keras.layers.ZeroPadding2D((3, 3))(X_input)
# 第一阶段
X = tf.keras.layers.Conv2D(filters=64, kernel_size=(7, 7), strides=(2, 2), name='conv1', kernel_initializer=tf.keras.initializers.glorot_uniform(seed=0))(X)
X = tf.keras.layers.BatchNormalization(axis=3, name='bn_conv1')(X)
X = tf.keras.layers.Activation('relu')(X)
X = tf.keras.layers.MaxPooling2D(pool_size=(3, 3), strides=(2, 2))(X)
# 第二阶段
X = convolutional_block(X, f=3, filters=[64, 64, 256], stage=2, block='a', s=1)
X = identity_block(X, 3, [64, 64, 256], stage=2, block='b')
X = identity_block(X, 3, [64, 64, 256], stage=2, block='c')
# 第三阶段
X = convolutional_block(X, f=3, filters=[128, 128, 512], stage=3, block='a', s=2)
X = identity_block(X, 3, [128, 128, 512], stage=3, block='b')
X = identity_block(X, 3, [128, 128, 512], stage=3, block='c')
X = identity_block(X, 3, [128, 128, 512], stage=3, block='d')
# 第四阶段
X = convolutional_block(X, f=3, filters=[256, 256, 1024], stage=4, block='a', s=2)
X = identity_block(X, 3, [256, 256, 1024], stage=4, block='b')
X = identity_block(X, 3, [256, 256, 1024], stage=4, block='c')
X = identity_block(X, 3, [256, 256, 1024], stage=4, block='d')
X = identity_block(X, 3, [256, 256, 1024], stage=4, block='e')
X = identity_block(X, 3, [256, 256, 1024], stage=4, block='f')
# 第五阶段
X = convolutional_block(X, f=3, filters=[512, 512, 2048], stage=5, block='a', s=2)
X = identity_block(X, 3, [512, 512, 2048], stage=5, block='b')
X = identity_block(X, 3, [512, 512, 2048], stage=5, block='c')
# 平均池化层
X = tf.keras.layers.AveragePooling2D(pool_size=(2, 2), padding='same')(X)
# 输出层
X = tf.keras.layers.Flatten()(X)
X = tf.keras.layers.Dense(classes, activation='softmax', name='fc' + str(classes), kernel_initializer=tf.keras.initializers.glorot_uniform(seed=0))(X)
# 创建模型
model = tf.keras.models.Model(inputs=X_input, outputs=X, name='ResNet50')
return model
```
阅读全文