请编写lua程序,实现布尔矩阵不同的布尔幂运算
时间: 2024-02-25 07:57:29 浏览: 80
以下是一个简单的Lua程序,用于实现布尔矩阵的布尔幂运算:
```lua
function bool_matrix_power(A, n)
local B = {}
for i = 1, #A do
B[i] = {}
for j = 1, #A do
B[i][j] = (i == j) and true or false
end
end
while n > 0 do
if n % 2 == 1 then
B = bool_matrix_multiply(B, A)
end
A = bool_matrix_multiply(A, A)
n = math.floor(n / 2)
end
return B
end
function bool_matrix_multiply(A, B)
local C = {}
for i = 1, #A do
C[i] = {}
for j = 1, #B[1] do
C[i][j] = false
for k = 1, #B do
C[i][j] = C[i][j] or (A[i][k] and B[k][j])
end
end
end
return C
end
-- Example usage:
A = {
{true, false, true},
{false, true, false},
{true, false, true}
}
n = 3
B = bool_matrix_power(A, n)
for i = 1, #B do
for j = 1, #B[1] do
io.write(B[i][j] and "1" or "0")
io.write(" ")
end
io.write("\n")
end
```
在这个程序中,我们定义了两个函数 `bool_matrix_power` 和 `bool_matrix_multiply`。`bool_matrix_power` 函数接受一个布尔矩阵 `A` 和一个非负整数 `n`,返回 `A` 的布尔幂 `A^n`。`bool_matrix_multiply` 函数接受两个布尔矩阵 `A` 和 `B`,返回它们的布尔乘积 `AB`。
在 `bool_matrix_power` 函数中,我们首先创建一个单位矩阵 `B`,然后使用二进制幂算法来计算 `A^n`。在每次迭代中,如果当前幂是奇数,我们将 `B` 与 `A` 相乘,然后将 `B` 赋值为乘积。然后,我们将 `A` 与自己相乘,并将当前幂除以2向下取整。最后,当幂为0时,我们返回矩阵 `B`。
在 `bool_matrix_multiply` 函数中,我们使用传统的矩阵乘积算法来计算矩阵乘积。对于矩阵 `C = AB` 的每个元素 `C[i][j]`,我们将其初始化为false,并计算 `A[i][k] && B[k][j]` 的逻辑值(即,如果 `A[i][k]` 和 `B[k][j]` 都为true,则 `C[i][j]` 为true)。最后,我们返回矩阵 `C`。
在示例用法中,我们定义了一个3x3的布尔矩阵 `A` 和一个正整数 `n`,然后计算 `A^n` 并打印结果。
阅读全文
相关推荐


















