推测一下下述代码在高斯研团模型的应用:def gaussnmdl_ins(qt, t, tr, Umean, hs, sigmax, sigmay, sigmaz, x, y, z, inverse, hi=10e50): Gy = 1 / (np.sqrt(2 * np.pi) * sigmay) * np.exp(-0.5 * (y / sigmay) ** 2) if inverse == 0: Gz = 1 / (np.sqrt(2 * np.pi) * sigmaz) * ( np.exp(-0.5 * ((z - hs) / sigmaz) ** 2) + np.exp(-0.5 * ((z + hs) / sigmaz) ** 2)) else: GZ = 0 for ii in range(1, 6): GZ = GZ + np.exp(-0.5 * ((z - 2 * ii * hi - hs) / sigmaz) ** 2) + np.exp( -0.5 * ((z + 2 * ii * hi - hs) / sigmaz) ** 2) + np.exp( -0.5 * ((z - 2 * ii * hi + hs) / sigmaz) ** 2) + np.exp(-0.5 * ((z + 2 * ii * hi + hs) / sigmaz) ** 2) Gz = GZ + 1 / (np.sqrt(2 * np.pi) * sigmaz) * ( np.exp(-0.5 * ((z - hs) / sigmaz) ** 2) + np.exp(-0.5 * ((z + hs) / sigmaz) ** 2)) dist = qt / Umean * Gy * Gz if t <= tr: c = dist / 2 * (erf(x / (sigmax * np.sqrt(2))) - erf((x - Umean * t) / (sigmax * np.sqrt(2)))) else: c = dist / 2 * (erf((x - Umean * (t - tr)) / (sigmax * np.sqrt(2))) - erf( (x - Umean * t) / (sigmax * np.sqrt(2)))) return c
时间: 2023-12-18 20:45:10 浏览: 81
高斯混合模型的完整代码
这段代码是高斯烟团模型的实现,用于计算烟气的浓度分布。输入参数包括:烟气体积流量qt、时间t、达到稳定状态的时间tr、烟气在某一点处的平均风速Umean、泄漏点高度hs、x、y、z代表空间位置坐标,sigmax、sigmay、sigmaz是烟气扩散系数,inverse是一个布尔量,表示是否使用复杂的高斯模型。
在高斯烟团模型中,烟气在空气中的浓度分布可以用高斯分布来表示。而这段代码就是在计算高斯分布的值,从而得到烟气在空间中不同位置的浓度分布情况。具体地,代码中使用Gy和Gz分别计算了在y和z方向上高斯分布的值,然后将其乘起来得到总的高斯分布值。最后,根据高斯分布值和时间、空间位置等参数,计算出烟气在某一点处的浓度分布值c。
因此,该代码可以用于预测烟气在空气中的浓度分布情况,从而帮助进行空气质量的评估和管理。
阅读全文