matlab gb2gray
时间: 2023-11-11 21:59:34 浏览: 102
matlab中的gb2gray函数是将彩色图像转换为灰度图像的函数。它使用了加权平均法,将红、绿、蓝三个通道的像素值按照一定的权重进行加权平均,得到一个灰度值。
使用方法如下:
```matlab
gray_img = rgb2gray(rgb_img);
```
其中,rgb_img是彩色图像,gray_img是转换后的灰度图像。
相关问题
2d-gabor的matlab代码
以下是一个简单的2D Gabor滤波器的Matlab代码示例:
```matlab
% 设置Gabor滤波器的参数
lambda = 4; % 波长
theta = pi/4; % 方向
psi = 0; % 相位偏移
gamma = 0.5; % 纵横比
bw = 1; % 带宽
% 创建Gabor滤波器
gabor = gabor_fn(bw,gamma,psi,lambda,theta);
% 显示Gabor滤波器
figure;
subplot(1,2,1), imshow(real(gabor),[]); title('实部');
subplot(1,2,2), imshow(imag(gabor),[]); title('虚部');
% 加载图像
img = imread('example.jpg');
img = rgb2gray(img);
% 对图像进行Gabor滤波
filtered_img = imfilter(img, gabor, 'symmetric');
% 显示结果
figure;
subplot(1,2,1), imshow(img); title('原图');
subplot(1,2,2), imshow(filtered_img); title('Gabor滤波后');
```
其中,gabor_fn是用于创建Gabor滤波器的函数,代码如下:
```matlab
function gb=gabor_fn(bw,gamma,psi,lambda,theta)
%bw = 1;
%gamma = 0.5;
%psi = 0;
%lambda = 4;
%theta = pi/4;
sigma = lambda/pi*sqrt(log(2)/2)*(2^bw+1)/(2^bw-1);
sigma_x = sigma;
sigma_y = sigma/gamma;
[x,y]=meshgrid(-fix(3*sigma_x):fix(3*sigma_x),-fix(3*sigma_y):fix(3*sigma_y));
x_theta=x*cos(theta)+y*sin(theta);
y_theta=-x*sin(theta)+y*cos(theta);
gb=exp(-0.5*(x_theta.^2/sigma_x^2+y_theta.^2/sigma_y^2)).*cos(2*pi/lambda*x_theta+psi);
```
这段代码使用了高斯函数和正弦余弦函数的乘积来创建Gabor滤波器。可以通过调整参数来改变滤波器的特性,例如方向、频率和带宽等。
function visualizeTableMask(data,idx) figure imagesc(idx) xticklabels(erase(data.Properties.VariableNames,"_")) xticks(1:width(data)) xtickangle(-45) ys = yticks; yticklabels(cellstr(data.Time(ys))) colormap gray end function plotEventCostsMap(data,threshold) ev = ["Flood","Lightning","Tropical Storm","Hurricane",... "Waterspout","Tornado"]; idx = ismember(string(data.event_type),ev) & ... data.damage_total > threshold; x = data(idx ,:); x.weathercats = removecats(x.weathercats); x = FillMissingLatLon(x); figure gb = geobubble(x,"begin_lat","begin_lon",... "SizeVariable","damage_total","ColorVariable","weathercats"); gb.Title = "Storm Event Damage"; gb.SizeLegendTitle = "Damage Cost ($1000)"; gb.ColorLegendTitle = "Event Type"; gb.Basemap = "colorterrain"; end function data = FillMissingLatLon(data) stateLatLon = struct2table(shaperead("usastatehi")); idx = find(ismissing(data.begin_lat) & ismissing(data.begin_lon) & ~ismissing(data.state) & ... ismember(string(data.weathercats),["Tropical Storm","Hurricane",... "Waterspout"])); for ii = 1:length(idx) sidx = lower(stateLatLon.Name) == lower(string(data.state(idx(ii)))); data.begin_lat(idx(ii)) = stateLatLon.LabelLat(sidx); data.begin_lon(idx(ii)) = stateLatLon.LabelLon(sidx); end end function plotEventCosts(data) ev = ["Flood","Lightning","Tropical Storm","Hurricane",... "Waterspout","Tornado"]; idx = ismember(string(data.event_type),ev) & ... data.damage_total > 0; x = data(idx ,:); x.weathercats = removecats(x.weathercats); warning("off","MATLAB:handle_graphics:Layout:NoPositionSetInTiledChartLayout") % Create figure t = tiledlayout(4,2,"TileSpacing","compact","Padding","compact"); %#ok nexttile([1 2]) boxplot(x.damage_total,x.event_type) ylabel("Damge Total ($)") nexttile(3,[3 1]) gb = geobubble(x,"begin_lat","begin_lon",... "SizeVariable","damage_total","ColorVariable","weathercats"); gb.Title = "Storm Event Damage Total"; gb.SizeLegendTitle = "Damage Cost ($1000)"; gb.ColorLegendTitle = "Event Type"; gb.Basemap = "colorterrain"; nexttile histogram(x.damage_property) title("Property Damage ($)") nexttile histogram(x.damage_crops) title("Crop Damage ($)") nexttile scatter(x.damage_property,x.damage_crops,"."); xlabel("Property Damage ($)"); ylabel("Crop Damage ($)") sgtitle("Damage by Event") warning("on","MATLAB:handle_graphics:Layout:NoPositionSetInTiledChartLayout") end
这段代码包含了多个函数,用于可视化数据和绘制图表。以下是每个函数的功能说明:
1. `visualizeTableMask(data,idx)`: 绘制一个图表,其中使用热图显示`idx`数据,并将`data`表的变量名作为x轴标签,并将`data.Time`作为y轴标签。
2. `plotEventCostsMap(data,threshold)`: 基于给定的阈值`threshold`,绘制一个地理气泡图,显示符合特定事件类型和损失阈值的数据。地理气泡图使用经度(begin_lon)和纬度(begin_lat)来定位气泡的位置,气泡的大小表示损失总额(damage_total),气泡的颜色表示天气类别(weathercats)。
3. `FillMissingLatLon(data)`: 填充缺失的经纬度信息。根据缺失的州信息(state)和特定的天气类别,从"usastatehi"数据中查找对应州的经纬度,并将其填充到data表中对应的记录中。
4. `plotEventCosts(data)`: 绘制一个包含多个子图的图表。其中,第一个子图是箱线图,显示不同事件类型的损失总额。第二个子图是地理气泡图,显示符合特定事件类型和损失阈值的数据。第三个和第四个子图分别是直方图,显示财产损失(damage_property)和农作物损失(damage_crops)的分布情况。最后一个子图是散点图,显示财产损失和农作物损失之间的关系。
请确保在运行这些函数之前已经加载了相应的数据,并且需要提供正确的参数。
阅读全文