多尺度的retinex算法matlab
时间: 2023-05-28 17:05:27 浏览: 166
MATLAB.zip_多尺度_多尺度 matlab_多尺度基于retinex的算法_改进单尺度
5星 · 资源好评率100%
以下是一个多尺度的Retinex算法的Matlab代码示例:
```matlab
function [output_image] = multiscale_retinex(input_image, sigma_list)
% This function performs multiscale Retinex algorithm on an input image
%
% INPUTS:
% input_image: An RGB image of size MxNx3
% sigma_list: A list of standard deviations (sigma) for Gaussian smoothing
%
% OUTPUTS:
% output_image: The enhanced RGB image of size MxNx3
% Convert the input image to double precision
input_image = im2double(input_image);
% Initialize variables
output_image = zeros(size(input_image));
% Compute the multiscale Retinex for each channel
for c = 1:3
channel = input_image(:,:,c);
channel_msr = zeros(size(channel));
for sigma = sigma_list
% Apply Gaussian smoothing to the channel
smoothed = imgaussfilt(channel, sigma);
% Compute the log of the channel
log_channel = log(channel + 1);
% Compute the log of the smoothed channel
log_smoothed = log(smoothed + 1);
% Compute the difference between the logs
diff = log_channel - log_smoothed;
% Apply exponential function to the difference
exp_diff = exp(diff);
% Add the exponential difference to the multiscale Retinex
channel_msr = channel_msr + exp_diff;
end
% Normalize the multiscale Retinex
channel_msr = channel_msr / length(sigma_list);
% Scale the channel by the multiscale Retinex
output_image(:,:,c) = channel ./ channel_msr;
end
% Clip the output image to the range [0,1]
output_image = max(0, min(output_image, 1));
end
```
使用方法:
```matlab
% Read the input image
input_image = imread('input_image.jpg');
% Define the sigma list
sigma_list = [15, 80, 250];
% Perform multiscale Retinex on the input image
output_image = multiscale_retinex(input_image, sigma_list);
% Display the input and output images
figure;
subplot(1,2,1); imshow(input_image); title('Input Image');
subplot(1,2,2); imshow(output_image); title('Output Image');
```
阅读全文