基于以下R代码:library(glmnet) library(ggplot2) # 生成5030的随机数据和30个变量 set.seed(1111) n <- 50 p <- 30 X <- matrix(runif(n * p), n, p) y <- rnorm(n) # 生成三组不同系数的线性模型 beta1 <- c(rep(1, 3), rep(0, p - 3)) beta2 <- c(rep(0, 10), rep(1, 3), rep(0, p - 13)) beta3 <- c(rep(0, 20), rep(1, 3), rep(0, p - 23)) y1 <- X %% beta1 + rnorm(n) y2 <- X %% beta2 + rnorm(n) y3 <- X %*% beta3 + rnorm(n),每个线性模型组,均进行交叉验证,并以par(3,2)的规格分别画出每组在进行交叉验证时,基于不同的$\lambda$的线性回归的CV error图和岭回归下的Prediction error图(图中仅需要有一根线平滑地连接每一个点即可,不需要最优$\lambda$取值线为的多余线段,所有画图过程用plot实现)
时间: 2024-02-24 09:57:27 浏览: 90
以下是代码实现:
```R
# 引入包
library(glmnet)
library(ggplot2)
# 生成数据
set.seed(1111)
n <- 50
p <- 30
X <- matrix(runif(n * p), n, p)
y <- rnorm(n)
# 生成三组不同系数的线性模型
beta1 <- c(rep(1, 3), rep(0, p - 3))
beta2 <- c(rep(0, 10), rep(1, 3), rep(0, p - 13))
beta3 <- c(rep(0, 20), rep(1, 3), rep(0, p - 23))
y1 <- X %*% beta1 + rnorm(n)
y2 <- X %*% beta2 + rnorm(n)
y3 <- X %*% beta3 + rnorm(n)
# 交叉验证和岭回归下的CV error和Prediction error图
par(mfrow = c(3, 2))
# 第一组
cv1 <- cv.glmnet(X, y1)
plot(cv1$lambda, cv1$cvm, type = "l", xlab = "lambda", ylab = "CV error")
pred1 <- predict(cv1, newx = X, s = "lambda.min")
plot(y1, pred1, pch = 20, xlab = "y", ylab = "Predicted y", main = "Prediction error")
# 第二组
cv2 <- cv.glmnet(X, y2)
plot(cv2$lambda, cv2$cvm, type = "l", xlab = "lambda", ylab = "CV error")
pred2 <- predict(cv2, newx = X, s = "lambda.min")
plot(y2, pred2, pch = 20, xlab = "y", ylab = "Predicted y", main = "Prediction error")
# 第三组
cv3 <- cv.glmnet(X, y3)
plot(cv3$lambda, cv3$cvm, type = "l", xlab = "lambda", ylab = "CV error")
pred3 <- predict(cv3, newx = X, s = "lambda.min")
plot(y3, pred3, pch = 20, xlab = "y", ylab = "Predicted y", main = "Prediction error")
```
注意:以上示例程序仅供参考,实际应用中还需要考虑细节问题,如图形美观、字体大小等。
阅读全文