function [Xk]=DIF_FFT_2(xn,N); M=log2(N); for m=0:M-1 Num_of_Group=2^m; Interval_of_Group=N/2^m; Interval_of_Unit=N/2^(m+1); Cycle_Count=N/2^(m+1)-1; Wn=exp(-j*2*pi/Interval_of_Group); for g=1:Num_of_Group Interval_1=(g-1)*Interval_of_Group; Interval_2=(g-1)*Interval_of_Group+Interval_of_Unit; for r=0:Cycle_Count; k=r+1; xn(k+Interval_1)=xn(k+Interval_1)+xn(k+Interval_2); xn(k+Interval_2)=[xn(k+Interval_1)-xn(k+Interval_2)-xn(k+Interval_2)]*Wn^r; end end end Xk = xn; end解释代码

时间: 2024-04-22 09:27:32 浏览: 8
这段代码是实现了基于分治思想的快速傅里叶变换(FFT)算法。它将输入的N个时域采样点作为xn输入,返回N个频域采样点作为Xk输出。 代码中的变量含义如下: - xn:输入的时域采样点序列 - N:采样点数 - Xk:输出的频域采样点序列 - M:N的二进制对数,即M=log2(N) - Num_of_Group:组数,每组包含Interval_of_Group个点 - Interval_of_Group:每组包含的采样点数 - Interval_of_Unit:单位间隔内包含的采样点数 - Cycle_Count:循环次数,即每个蝴蝶运算的重复次数 - Wn:旋转因子,即Wn=exp(-j*2*pi/Interval_of_Group) 代码的主要逻辑是通过循环实现不同的蝴蝶运算,每个蝴蝶运算包含两个点的计算,其中一个点的下标与另一个点的下标相差Interval_of_Unit。循环次数为Cycle_Count,每次循环中的Wn^r代表旋转因子的r次方。最终得到输出的频域采样点序列Xk。
相关问题

代码解释data_after_fft1 = DIF_FFT_2(data_before_fft, 1024); data_after_fft = data_after_fft1.'; data_real = fix(real(data_after_fft)); data_imag = fix(imag(data_after_fft));

这段代码的作用是对一个长度为1024的实数序列data_before_fft进行快速傅里叶变换(FFT),然后将结果转置,得到一个复数序列data_after_fft。接着,使用fix函数取出data_after_fft中的实部和虚部并转化为整数类型,分别保存在data_real和data_imag中。其中DIF_FFT_2函数是用于实现快速傅里叶变换的函数,它的具体实现方式是基于蝶形运算的FFT算法。

import numpy as np N = 32 n = np.arange(N) wn = np.random.uniform(0, 1, N) X1 = np.cos(2 * np.pi * n / N) * wn X2 = np.sin(2 * np.pi * n / N) X1_fft = np.fft.fft(X1) X2_fft = np.fft.fft(X2) X3_fft = X1_fft * X2_fft X3_fft[:N] = X3_fft[:N] / N X3_fft[N:] = 0 X3 = np.fft.ifft(X3_fft) X3 = np.real(X3) print(X3)

这段代码使用了numpy库中的FFT函数来计算两个信号的乘积的傅里叶变换。首先,np.arange(N)生成了一个从0到31的序列,作为离散时间轴上的采样点。接着,np.random.uniform(0, 1, N)生成了一个从0到1的随机数序列,作为加权系数。然后,X1和X2分别计算了一个正余弦信号,其中正弦信号使用了wn作为加权系数。接下来,使用np.fft.fft函数对X1和X2进行傅里叶变换,得到它们的频率域表示X1_fft和X2_fft。将它们相乘,得到X3_fft,即两个信号的乘积的傅里叶变换。由于FFT计算的是周期性信号的频谱,因此需要将X3_fft的前一半和后一半重新排列,以得到正确的结果。最后,使用np.fft.ifft函数对X3_fft进行逆傅里叶变换,得到X3,即两个信号的乘积的时域表示。因为傅里叶变换是线性变换,所以X3和X1、X2的乘积的时域表示是一样的。最后,使用np.real函数取实部,得到X3的实数部分。

相关推荐

下面给出一段代码:class AudioDataset(Dataset): def init(self, train_data): self.train_data = train_data self.n_frames = 128 def pad_zero(self, input, length): input_shape = input.shape if input_shape[0] >= length: return input[:length] if len(input_shape) == 1: return np.append(input, [0] * (length - input_shape[0]), axis=0) if len(input_shape) == 2: return np.append(input, [[0] * input_shape[1]] * (length - input_shape[0]), axis=0) def getitem(self, index): t_r = self.train_data[index] clean_file = t_r[0] noise_file = t_r[1] wav_noise_magnitude, wav_noise_phase = self.extract_fft(noise_file) start_index = len(wav_noise_phase) - self.n_frames + 1 if start_index < 1: start_index = 1 else: start_index = np.random.randint(start_index) sub_noise_magnitude = self.pad_zero(wav_noise_magnitude[start_index:start_index + self.n_frames], self.n_frames) wav_clean_magnitude, wav_clean_phase = self.extract_fft(clean_file) sub_clean_magnitude = self.pad_zero(wav_clean_magnitude[start_index:start_index + self.n_frames], self.n_frames) b_data = {'input_clean_magnitude': sub_clean_magnitude, 'input_noise_magnitude': sub_noise_magnitude} return b_data def extract_fft(self, wav_path): audio_samples = librosa.load(wav_path, sr=16000)[0] stft_result = librosa.stft(audio_samples, n_fft=n_fft, win_length=win_length, hop_length=hop_length, center=True) stft_magnitude = np.abs(stft_result).T stft_phase = np.angle(stft_result).T return stft_magnitude, stft_phase def len(self): return len(self.train_data)。请给出详细注释

最新推荐

recommend-type

HTML+CSS制作的个人博客网页.zip

如标题所述,内有详细说明
recommend-type

基于MATLAB实现的SVC PSR 光谱数据的读入,光谱平滑,光谱重采样,文件批处理;+使用说明文档.rar

CSDN IT狂飙上传的代码均可运行,功能ok的情况下才上传的,直接替换数据即可使用,小白也能轻松上手 【资源说明】 基于MATLAB实现的SVC PSR 光谱数据的读入,光谱平滑,光谱重采样,文件批处理;+使用说明文档.rar 1、代码压缩包内容 主函数:main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2020b;若运行有误,根据提示GPT修改;若不会,私信博主(问题描述要详细); 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开main.m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可后台私信博主; 4.1 期刊或参考文献复现 4.2 Matlab程序定制 4.3 科研合作 功率谱估计: 故障诊断分析: 雷达通信:雷达LFM、MIMO、成像、定位、干扰、检测、信号分析、脉冲压缩 滤波估计:SOC估计 目标定位:WSN定位、滤波跟踪、目标定位 生物电信号:肌电信号EMG、脑电信号EEG、心电信号ECG 通信系统:DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测识别融合、LEACH协议、信号检测、水声通信 5、欢迎下载,沟通交流,互相学习,共同进步!
recommend-type

基于MATLAB实现的有限差分法实验报告用MATLAB中的有限差分法计算槽内电位+使用说明文档

CSDN IT狂飙上传的代码均可运行,功能ok的情况下才上传的,直接替换数据即可使用,小白也能轻松上手 【资源说明】 基于MATLAB实现的有限差分法实验报告用MATLAB中的有限差分法计算槽内电位;对比解析法和数值法的异同点;选取一点,绘制收敛曲线;总的三维电位图+使用说明文档 1、代码压缩包内容 主函数:main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2020b;若运行有误,根据提示GPT修改;若不会,私信博主(问题描述要详细); 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开main.m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可后台私信博主; 4.1 期刊或参考文献复现 4.2 Matlab程序定制 4.3 科研合作 功率谱估计: 故障诊断分析: 雷达通信:雷达LFM、MIMO、成像、定位、干扰、检测、信号分析、脉冲压缩 滤波估计:SOC估计 目标定位:WSN定位、滤波跟踪、目标定位 生物电信号:肌电信号EMG、脑电信号EEG、心电信号ECG 通信系统:DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测识别融合、LEACH协议、信号检测、水声通信 5、欢迎下载,沟通交流,互相学习,共同进步!
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战演练】MATLAB用遗传算法改进粒子群GA-PSO算法

![MATLAB智能算法合集](https://static.fuxi.netease.com/fuxi-official/web/20221101/83f465753fd49c41536a5640367d4340.jpg) # 2.1 遗传算法的原理和实现 遗传算法(GA)是一种受生物进化过程启发的优化算法。它通过模拟自然选择和遗传机制来搜索最优解。 **2.1.1 遗传算法的编码和解码** 编码是将问题空间中的解表示为二进制字符串或其他数据结构的过程。解码是将编码的解转换为问题空间中的实际解的过程。常见的编码方法包括二进制编码、实数编码和树形编码。 **2.1.2 遗传算法的交叉和
recommend-type

openstack的20种接口有哪些

以下是OpenStack的20种API接口: 1. Identity (Keystone) API 2. Compute (Nova) API 3. Networking (Neutron) API 4. Block Storage (Cinder) API 5. Object Storage (Swift) API 6. Image (Glance) API 7. Telemetry (Ceilometer) API 8. Orchestration (Heat) API 9. Database (Trove) API 10. Bare Metal (Ironic) API 11. DNS
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【实战演练】时间序列预测用于个体家庭功率预测_ARIMA, xgboost, RNN

![【实战演练】时间序列预测用于个体家庭功率预测_ARIMA, xgboost, RNN](https://img-blog.csdnimg.cn/img_convert/5587b4ec6abfc40c76db14fbef6280db.jpeg) # 1. 时间序列预测简介** 时间序列预测是一种预测未来值的技术,其基于历史数据中的时间依赖关系。它广泛应用于各种领域,例如经济、金融、能源和医疗保健。时间序列预测模型旨在捕捉数据中的模式和趋势,并使用这些信息来预测未来的值。 # 2. 时间序列预测方法 时间序列预测方法是利用历史数据来预测未来趋势或值的统计技术。在时间序列预测中,有许多不