请用Pytorch框架给出基于深度学习的去噪实现这个实验的相关代码
时间: 2024-02-06 18:02:14 浏览: 65
好的,下面是一个简单的基于PyTorch框架的去噪实现代码:
```python
import torch
import torch.nn as nn
import torch.optim as optim
class DnCNN(nn.Module):
def __init__(self, num_layers=17, num_filters=64):
super(DnCNN, self).__init__()
layers = []
layers.append(nn.Conv2d(1, num_filters, kernel_size=3, stride=1, padding=1, bias=False))
layers.append(nn.ReLU(inplace=True))
for i in range(num_layers - 2):
layers.append(nn.Conv2d(num_filters, num_filters, kernel_size=3, stride=1, padding=1, bias=False))
layers.append(nn.BatchNorm2d(num_filters, eps=0.0001, momentum=0.95))
layers.append(nn.ReLU(inplace=True))
layers.append(nn.Conv2d(num_filters, 1, kernel_size=3, stride=1, padding=1, bias=False))
self.dncnn = nn.Sequential(*layers)
def forward(self, x):
y = x
out = self.dncnn(x)
return y - out
def train_dncnn(model, train_loader, val_loader, epochs, lr, device):
criterion = nn.MSELoss()
optimizer = optim.Adam(model.parameters(), lr=lr)
for epoch in range(epochs):
model.train()
train_loss = 0.0
for batch_idx, (data, target) in enumerate(train_loader):
data, target = data.to(device), target.to(device)
optimizer.zero_grad()
output = model(data)
loss = criterion(output, target)
loss.backward()
optimizer.step()
train_loss += loss.item()
train_loss /= len(train_loader)
model.eval()
val_loss = 0.0
with torch.no_grad():
for batch_idx, (data, target) in enumerate(val_loader):
data, target = data.to(device), target.to(device)
output = model(data)
loss = criterion(output, target)
val_loss += loss.item()
val_loss /= len(val_loader)
print('Epoch: {}, Train Loss: {:.6f}, Val Loss: {:.6f}'.format(epoch+1, train_loss, val_loss))
```
这个代码实现了DnCNN模型,并提供了一个训练函数`train_dncnn`,可以用于训练模型。其中`train_loader`和`val_loader`是训练集和验证集的数据加载器,`epochs`是训练轮数,`lr`是学习率,`device`是设备(CPU或GPU)。在训练模型之后,可以使用训练好的模型对测试集进行去噪处理。
阅读全文