ecg信号分类预测代码
时间: 2023-08-15 10:05:01 浏览: 108
这里提供一个使用深度学习模型(卷积神经网络)对ECG信号进行分类预测的Python代码示例:
```python
import os
import wfdb
import numpy as np
from sklearn.utils import shuffle
from sklearn.metrics import classification_report
from keras.utils import to_categorical
from keras.models import Sequential
from keras.layers import Dense, Conv1D, MaxPooling1D, Flatten
# 设置数据路径和类别标签
data_path = "/path/to/data"
class_labels = ["N", "A", "V", "L", "R"]
# 读取数据
def load_data():
files = os.listdir(data_path)
ecg_signals = []
ecg_labels = []
for filename in files:
record = wfdb.rdrecord(os.path.join(data_path, filename))
annotation = wfdb.rdann(os.path.join(data_path, filename), 'atr')
signal = record.p_signal[:,0]
ecg_class = annotation.symbol
for i in range(len(ecg_class)):
if ecg_class[i] in class_labels:
ecg_signal = signal[i*360:(i+1)*360]
ecg_signals.append(ecg_signal)
ecg_labels.append(ecg_class[i])
return ecg_signals, ecg_labels
# 对数据进行预处理
def preprocess_data(ecg_signals, ecg_labels):
ecg_signals = np.array(ecg_signals)
ecg_signals = np.expand_dims(ecg_signals, axis=-1)
ecg_labels = [class_labels.index(label) for label in ecg_labels]
ecg_labels = to_categorical(ecg_labels)
ecg_signals, ecg_labels = shuffle(ecg_signals, ecg_labels)
return ecg_signals, ecg_labels
# 构建卷积神经网络模型
def build_model():
model = Sequential()
model.add(Conv1D(32, 3, activation='relu', input_shape=(360, 1)))
model.add(Conv1D(64, 3, activation='relu'))
model.add(MaxPooling1D(2))
model.add(Flatten())
model.add(Dense(128, activation='relu'))
model.add(Dense(len(class_labels), activation='softmax'))
model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])
return model
# 训练模型
def train_model(ecg_signals, ecg_labels):
model = build_model()
model.fit(ecg_signals, ecg_labels, validation_split=0.2, epochs=10, batch_size=32)
return model
# 评估模型
def evaluate_model(model, ecg_signals, ecg_labels):
ecg_labels = np.argmax(ecg_labels, axis=1)
predictions = model.predict(ecg_signals)
predictions = np.argmax(predictions, axis=1)
print(classification_report(ecg_labels, predictions, target_names=class_labels))
# 加载数据
ecg_signals, ecg_labels = load_data()
# 预处理数据
ecg_signals, ecg_labels = preprocess_data(ecg_signals, ecg_labels)
# 训练模型
model = train_model(ecg_signals, ecg_labels)
# 评估模型
evaluate_model(model, ecg_signals, ecg_labels)
```
在这个示例中,我们使用WFDB库读取ECG信号数据,然后使用Keras构建一个卷积神经网络模型。我们使用交叉熵损失和Adam优化器训练模型,并使用分类准确度评估模型性能。最后,我们使用标准的分类报告评估模型的性能。
阅读全文