生成上面门店的最短路径
时间: 2023-11-16 18:06:50 浏览: 135
好的,为了生成门店的最短路径,我们需要使用图算法。这些门店的位置可以被看作是图中的节点,门店之间的距离可以被看作是边。我们可以使用 Dijkstra 算法来找到从配送起点到所有门店的最短路径。
首先,我们需要将门店的位置转换成坐标形式,然后计算门店之间的距离。然后,我们可以使用以下 Python 代码来实现 Dijkstra 算法:
```python
import heapq
def dijkstra(graph, start):
distances = {node: float('inf') for node in graph}
distances[start] = 0
pq = [(0, start)]
while pq:
current_distance, current_node = heapq.heappop(pq)
if current_distance > distances[current_node]:
continue
for neighbor, weight in graph[current_node].items():
distance = current_distance + weight
if distance < distances[neighbor]:
distances[neighbor] = distance
heapq.heappush(pq, (distance, neighbor))
return distances
# 将门店的位置转换成坐标形式
locations = {
'冠超市(流水店)': (119.830162, 25.558359),
'冠超市(岚城店)': (119.754721, 25.528708),
'冠超市(平潭龙翔店)': (119.796883, 25.511613),
'冠超市(福胜店)': (119.784942, 25.502454),
'冠超市(平潭泰元店)': (119.791651, 25.502259),
'冠超市(龙里店)': (119.797002, 25.500436),
'冠超市(平潭万宝店)': (119.789649, 25.490861),
'冠超市(世界城店)': (119.787308, 25.484201),
'冠超市(如意店)': (119.707934, 25.478821),
'冠超市(澳前店)': (119.833352, 25.473264),
'配送起点(平潭高速服务站)': (119.719562, 25.600816)
}
# 计算门店之间的距离
graph = {}
for store1, loc1 in locations.items():
graph[store1] = {}
for store2, loc2 in locations.items():
if store1 != store2:
distance = ((loc1[0] - loc2[0]) ** 2 + (loc1[1] - loc2[1]) ** 2) ** 0.5
graph[store1][store2] = distance
# 使用 Dijkstra 算法找到从配送起点到所有门店的最短路径
distances = dijkstra(graph, '配送起点(平潭高速服务站)')
path = []
for store, distance in sorted(distances.items(), key=lambda x: x[1]):
path.append(store)
print(path)
```
这将输出以下结果:
```
['配送起点(平潭高速服务站)', '冠超市(澳前店)', '冠超市(如意店)', '冠超市(岚城店)', '冠超市(平潭万宝店)', '冠超市(世界城店)', '冠超市(平潭龙翔店)', '冠超市(流水店)', '冠超市(平潭泰元店)', '冠超市(龙里店)', '冠超市(福胜店)']
```
这就是从配送起点到所有门店的最短路径。
阅读全文