深度学习目标检测模型代码
时间: 2023-11-09 21:34:54 浏览: 69
基于深度学习的实时目标检测。包括Windows平台运行演示软件、模型网络和结构、模型推理和封装原始代码。
5星 · 资源好评率100%
以下是常见的深度学习目标检测模型代码示例:
1. Faster R-CNN
Faster R-CNN 是一种流行的目标检测模型,其代码示例如下:
```
import torch
import torchvision
import torchvision.transforms as transforms
import torch.optim as optim
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
import matplotlib.pyplot as plt
# Define the model
class FasterRCNN(nn.Module):
def __init__(self):
super(FasterRCNN, self).__init__()
self.feature_extractor = torchvision.models.vgg16(pretrained=True).features
self.rpn = RegionProposalNetwork()
self.roi_pooling = RoIPooling()
self.classifier = nn.Sequential(nn.Linear(4096, 4096),
nn.ReLU(),
nn.Dropout(),
nn.Linear(4096, 4096),
nn.ReLU(),
nn.Dropout(),
nn.Linear(4096, 21))
def forward(self, x):
features = self.feature_extractor(x)
rpn_locs, rpn_scores, rois, roi_indices = self.rpn(features)
pooled_features = self.roi_pooling(features, rois, roi_indices)
pooled_features = pooled_features.view(pooled_features.size(0), -1)
cls_scores = self.classifier(pooled_features)
return cls_scores, rpn_locs, rpn_scores, rois, roi_indices
# Define the loss function
class FasterRCNNLoss(nn.Module):
def __init__(self):
super(FasterRCNNLoss, self).__init__()
self.bbox_loss = nn.SmoothL1Loss()
self.cls_loss = nn.CrossEntropyLoss()
def forward(self, cls_scores, rpn_locs, rpn_scores, gt_boxes, gt_labels):
fg_indices = (gt_labels > 0).nonzero().squeeze()
bg_indices = (gt_labels == 0).nonzero().squeeze()
# Calculate the classification loss
cls_loss = self.cls_loss(cls_scores, gt_labels)
# Calculate the regression loss
gt_bbox = bbox_transform(gt_boxes)
pos_bbox = gt_bbox[fg_indices]
pos_rpn_locs = rpn_locs[fg_indices]
bbox_loss = self.bbox_loss(pos_rpn_locs, pos_bbox)
# Calculate the region proposal network loss
rpn_labels = generate_rpn_labels(gt_boxes, gt_labels, rpn_scores.size(1))
rpn_scores = rpn_scores.view(-1, 2)
rpn_labels = rpn_labels.view(-1)
rpn_loss = F.cross_entropy(rpn_scores, rpn_labels)
return cls_loss + bbox_loss + rpn_loss
# Train the model
model = FasterRCNN()
criterion = FasterRCNNLoss()
optimizer = optim.SGD(model.parameters(), lr=0.001, momentum=0.9)
for epoch in range(10):
running_loss = 0.0
for i, data in enumerate(trainloader, 0):
inputs, labels = data
optimizer.zero_grad()
cls_scores, rpn_locs, rpn_scores, rois, roi_indices = model(inputs)
loss = criterion(cls_scores, rpn_locs, rpn_scores, labels)
loss.backward()
optimizer.step()
running_loss += loss.item()
print('[%d] loss: %.3f' % (epoch + 1, running_loss / len(trainloader)))
```
2. YOLOv3
YOLOv3 是另一种流行的目标检测模型,其代码示例如下:
```
import torch
import torchvision
import torchvision.transforms as transforms
import torch.optim as optim
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
import matplotlib.pyplot as plt
# Define the model
class YOLOv3(nn.Module):
def __init__(self):
super(YOLOv3, self).__init__()
self.backbone = Darknet53()
self.detector = YOLOv3Detector()
def forward(self, x):
features = self.backbone(x)
output = self.detector(features)
return output
# Define the loss function
class YOLOv3Loss(nn.Module):
def __init__(self, num_classes=80):
super(YOLOv3Loss, self).__init__()
self.num_classes = num_classes
self.obj_scale = 1
self.noobj_scale = 100
self.class_scale = 1
self.coord_scale = 5
def forward(self, output, target):
# Calculate the objectness loss
obj_mask = target[..., 4] > 0
noobj_mask = target[..., 4] == 0
obj_loss = F.binary_cross_entropy_with_logits(output[..., 4], target[..., 4], reduction='none')
noobj_loss = F.binary_cross_entropy_with_logits(output[..., 4], target[..., 4], reduction='none')
obj_loss = torch.sum(obj_loss[obj_mask]) * self.obj_scale
noobj_loss = torch.sum(noobj_loss[noobj_mask]) * self.noobj_scale
# Calculate the class loss
class_loss = F.binary_cross_entropy_with_logits(output[..., 5:], target[..., 5:], reduction='none')
class_loss = torch.sum(class_loss[obj_mask]) * self.class_scale
# Calculate the regression loss
xy_loss = F.binary_cross_entropy_with_logits(output[..., :2], target[..., :2], reduction='none')
wh_loss = F.mse_loss(output[..., 2:4], target[..., 2:4], reduction='none')
coord_loss = torch.sum(xy_loss[obj_mask]) + torch.sum(wh_loss[obj_mask])
coord_loss = coord_loss * self.coord_scale
# Calculate the total loss
total_loss = obj_loss + noobj_loss + class_loss + coord_loss
return total_loss
# Train the model
model = YOLOv3()
criterion = YOLOv3Loss()
optimizer = optim.SGD(model.parameters(), lr=0.001, momentum=0.9)
for epoch in range(10):
running_loss = 0.0
for i, data in enumerate(trainloader, 0):
inputs, labels = data
optimizer.zero_grad()
output = model(inputs)
loss = criterion(output, labels)
loss.backward()
optimizer.step()
running_loss += loss.item()
print('[%d] loss: %.3f' % (epoch + 1, running_loss / len(trainloader)))
```
阅读全文