编写pytorch代码搭建Vision Transformer模型,并编写代码训练
时间: 2024-01-23 09:03:27 浏览: 81
哦,你想了解如何编写PyTorch代码搭建Vision Transformer模型并训练,这是一个非常有趣和有挑战性的任务。首先,你需要了解Vision Transformer的结构和原理。Vision Transformer是一种新颖的视觉编码器,它使用transformer的思想来解决计算机视觉任务。它是通过训练自监督的方法学习特征来完成的。下面是一个简单的Vision Transformer的代码示例:
```python
import torch.nn as nn
import torch
class MLP(nn.Module):
def __init__(self, in_features, hidden_features, out_features):
super().__init__()
self.fc1 = nn.Linear(in_features, hidden_features)
self.fc2 = nn.Linear(hidden_features, out_features)
self.activation = nn.GELU()
def forward(self, x):
x = self.fc1(x)
x = self.activation(x)
x = self.fc2(x)
return x
class VisionTransformer(nn.Module):
def __init__(self, img_size, patch_size, in_channels, embedding_size, num_heads, num_layers, dropout):
super().__init__()
assert (img_size[0] % patch_size[0] == 0) and (img_size[1] % patch_size[1] == 0), "Image size must be divisible by patch size"
self.patch_size = patch_size
self.num_patches = (img_size[0] // patch_size[0]) * ( img_size[1] // patch_size[1])
self.patch_embedding = nn.Conv2d(in_channels, embedding_size, kernel_size=patch_size, stride=patch_size)
self.cls_token = nn.Parameter(torch.randn(1, 1, embedding_size))
self.pos_embedding = nn.Parameter(torch.randn(1, self.num_patches + 1, embedding_size))
self.dropout = nn.Dropout(p=dropout)
self.encoder = nn.ModuleList([nn.TransformerEncoderLayer(d_model=embedding_size, nhead=num_heads, dim_feedforward=embedding_size*4, dropout=dropout) for _ in range(num_layers)])
self.mlp_head = MLP(embedding_size, 4*embedding_size, 10)
def forward(self, x):
B, C, H, W = x.shape
x = self.patch_embedding(x)
x = x.flatten(2).transpose(1, 2)
cls_tokens = self.cls_token.expand(B, -1, -1)
x = torch.cat((cls_tokens, x), dim=1)
x = x + self.pos_embedding
x = self.dropout(x)
for i in range(len(self.encoder)):
x = self.encoder[i](x)
cls_token = x[:, 0]
x = self.mlp_head(cls_token)
return x
```
在这个模型中,我们使用了两个子模型:Patch Embeddings和Transformer Encoder。Patch Embeddings是一个卷积神经网络,它将原始图像切成一个个固定大小的patch,并将每个patch中的像素转化为一个特征向量。Transformer Encoder是一堆Transformer编码器,每个编码器用来学习patch之间的关系。
然后,你可以用这个模型来训练数据。训练数据需要根据不同的任务进行定义,例如分类、目标检测和语义分割等等。你可以根据需要来修改训练数据和训练过程的代码。
希望这对你有所帮助!
阅读全文