jupyter Resnet网络
时间: 2023-06-10 19:08:28 浏览: 98
基于ResNet网络模型的花卉识别研究
ResNet是一个非常流行的深度学习模型,用于图像分类,目标检测和其他计算机视觉任务中。在jupyter中使用ResNet网络,可以通过以下步骤实现:
1. 安装PyTorch和torchvision
```python
!pip install torch torchvision
```
2. 导入所需的库
```python
import torch
import torch.nn as nn
import torch.optim as optim
import torchvision
import torchvision.transforms as transforms
```
3. 定义ResNet模型
```python
class ResNet(nn.Module):
def __init__(self):
super(ResNet, self).__init__()
self.resnet = torchvision.models.resnet18(pretrained=True)
self.fc = nn.Linear(1000, 10)
def forward(self, x):
x = self.resnet(x)
x = self.fc(x)
return x
```
4. 加载数据集并进行数据预处理
```python
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
])
trainset = torchvision.datasets.CIFAR10(root='./data', train=True,
download=True, transform=transform)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=32,
shuffle=True, num_workers=2)
testset = torchvision.datasets.CIFAR10(root='./data', train=False,
download=True, transform=transform)
testloader = torch.utils.data.DataLoader(testset, batch_size=32,
shuffle=False, num_workers=2)
```
5. 定义损失函数和优化器
```python
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9)
```
6. 训练模型
```python
for epoch in range(10):
running_loss = 0.0
for i, data in enumerate(trainloader, 0):
inputs, labels = data
optimizer.zero_grad()
outputs = net(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
running_loss += loss.item()
if i % 2000 == 1999:
print('[%d, %5d] loss: %.3f' %
(epoch + 1, i + 1, running_loss / 2000))
running_loss = 0.0
```
7. 测试模型
```python
correct = 0
total = 0
with torch.no_grad():
for data in testloader:
images, labels = data
outputs = net(images)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
print('Accuracy of the network on the 10000 test images: %d %%' % (
100 * correct / total))
```
这样就可以在jupyter中使用ResNet网络进行图像分类任务了。
阅读全文