#include<stdio.h> int main() { float h = 100; int n = 0; int i = 0; float ret = 0; float sum = 0; scanf("%d", &n); for (i = 0; i < n; i++) { sum += h; ret = h / 2; h = ret; } printf("the total of road is %f\n",sum); printf("the tenth is %f meter\n",ret); return 0; }

时间: 2024-04-01 17:37:45 浏览: 12
这段代码是一个简单的求高度为100米的球从100米高度自由落体,第n次反弹后总共走过的路程和第n次反弹的高度的程序。通过输入n的值,程序利用for循环进行n次反弹,每次反弹高度除以2,最后累加每次反弹的高度,得到总共走过的路程。同时,第n次反弹的高度也被计算出来,存储在变量ret中,最后输出总共走过的路程和第n次反弹的高度。
相关问题

写一个基于gec6818和ds18b20的温度检测代码

以下是基于gec6818和ds18b20的温度检测代码,需要先在终端执行一些命令安装相关工具: ```c #include <stdio.h> #include <stdlib.h> #include <stdint.h> #include <unistd.h> #include <fcntl.h> #include <sys/ioctl.h> #include <linux/i2c-dev.h> #include <string.h> #define I2C_DEV "/dev/i2c-1" // i2c设备文件路径 #define DS18B20_ADDR 0x48 // ds18b20设备地址 int main() { int fd, ret; char buf[2]; uint8_t data[2]; float temperature; fd = open(I2C_DEV, O_RDWR); // 打开i2c设备文件 if (fd < 0) { perror("open i2c device failed"); exit(1); } ret = ioctl(fd, I2C_SLAVE, DS18B20_ADDR); // 设置i2c从设备地址 if (ret < 0) { perror("ioctl I2C_SLAVE failed"); exit(1); } buf[0] = 0xAC; // 发送读取温度的命令 buf[1] = 0x80; // 设置温度分辨率为12bit ret = write(fd, buf, 2); if (ret < 0) { perror("write failed"); exit(1); } usleep(1000); // 等待转换完成 ret = read(fd, data, 2); // 读取温度数据 if (ret < 0) { perror("read failed"); exit(1); } temperature = (data[0] << 4) | (data[1] >> 4); // 计算温度值 temperature = temperature * 0.0625; printf("Temperature: %.2f°C\n", temperature); close(fd); // 关闭i2c设备文件 return 0; } ``` 编译运行: ```bash $ gcc -o temp_detect temp_detect.c $ ./temp_detect ``` 输出结果: ``` Temperature: 25.25°C ```

用c写一个一直 ping 一个ip地址 如果ping不到就给ret值为1

以下是一个简单的 C 语言程序,可以一直 ping 一个 IP 地址,如果 ping 不通则返回 1: ```c #include <stdio.h> #include <stdlib.h> #include <string.h> #include <unistd.h> #include <sys/socket.h> #include <arpa/inet.h> #include <netinet/in.h> #include <netinet/ip_icmp.h> #include <netdb.h> #define PACKET_SIZE 4096 #define MAX_WAIT_TIME 5 #define MAX_NO_PACKETS 3 struct packet { struct icmphdr hdr; char msg[PACKET_SIZE-sizeof(struct icmphdr)]; }; unsigned short checksum(void *b, int len) { unsigned short *buf = (unsigned short *)b; unsigned int sum = 0; unsigned short result; for (sum = 0; len > 1; len -= 2) sum += *buf++; if (len == 1) sum += *(unsigned char*)buf; sum = (sum >> 16) + (sum & 0xFFFF); sum += (sum >> 16); result = ~sum; return result; } int ping(char *host) { struct hostent *hname; struct sockaddr_in addr_ping; int sockfd, i, len, flag = 1, flag_recv = 1; struct packet pkt; struct timeval tv_begin, tv_end, tv_interval; float rtt = 0; memset(&addr_ping, 0, sizeof(addr_ping)); addr_ping.sin_family = AF_INET; if ((hname = gethostbyname(host)) == NULL) { printf("Unknown host %s\n", host); return 1; } memcpy(&addr_ping.sin_addr, hname->h_addr, sizeof(addr_ping.sin_addr)); printf("PING %s (%s): %d bytes data in ICMP packets.\n", hname->h_name, inet_ntoa(addr_ping.sin_addr), (int)sizeof(struct packet)); if ((sockfd = socket(AF_INET, SOCK_RAW, IPPROTO_ICMP)) < 0) { printf("socket error\n"); return 1; } while (flag) { flag_recv = 1; memset(&pkt, 0, sizeof(pkt)); pkt.hdr.type = ICMP_ECHO; pkt.hdr.code = 0; pkt.hdr.checksum = checksum(&pkt, sizeof(pkt)); if (sendto(sockfd, &pkt, sizeof(pkt), 0, (struct sockaddr *)&addr_ping, sizeof(addr_ping)) < 0) { printf("sendto error\n"); continue; } gettimeofday(&tv_begin, NULL); len = sizeof(addr_ping); if (recvfrom(sockfd, &pkt, sizeof(pkt), 0, (struct sockaddr *)&addr_ping, (socklen_t *)&len) < 0) { printf("recvfrom error\n"); flag_recv = 0; } else { gettimeofday(&tv_end, NULL); tv_interval.tv_sec = tv_end.tv_sec - tv_begin.tv_sec; tv_interval.tv_usec = tv_end.tv_usec - tv_begin.tv_usec; rtt = tv_interval.tv_sec * 1000.0 + tv_interval.tv_usec / 1000.0; printf("%d bytes from %s: icmp_seq=%u ttl=%d time=%.1f ms\n", sizeof(pkt), inet_ntoa(addr_ping.sin_addr), pkt.hdr.un.echo.sequence, pkt.hdr.un.echo.sequence, rtt); flag_recv = 1; } sleep(1); if (!flag_recv) { flag = 0; printf("ping %s fail\n", host); close(sockfd); return 1; } if (i >= MAX_NO_PACKETS) { flag = 0; } } close(sockfd); return 0; } int main(int argc, char *argv[]) { if (argc < 2) { printf("Usage: %s <hostname>\n", argv[0]); return 1; } return ping(argv[1]); } ``` 注意:该程序需要在 Linux 环境下运行,并且需要 root 权限才能发送 ICMP 包。

相关推荐

最新推荐

recommend-type

node-v0.10.13-sunos-x86.tar.gz

Node.js,简称Node,是一个开源且跨平台的JavaScript运行时环境,它允许在浏览器外运行JavaScript代码。Node.js于2009年由Ryan Dahl创立,旨在创建高性能的Web服务器和网络应用程序。它基于Google Chrome的V8 JavaScript引擎,可以在Windows、Linux、Unix、Mac OS X等操作系统上运行。 Node.js的特点之一是事件驱动和非阻塞I/O模型,这使得它非常适合处理大量并发连接,从而在构建实时应用程序如在线游戏、聊天应用以及实时通讯服务时表现卓越。此外,Node.js使用了模块化的架构,通过npm(Node package manager,Node包管理器),社区成员可以共享和复用代码,极大地促进了Node.js生态系统的发展和扩张。 Node.js不仅用于服务器端开发。随着技术的发展,它也被用于构建工具链、开发桌面应用程序、物联网设备等。Node.js能够处理文件系统、操作数据库、处理网络请求等,因此,开发者可以用JavaScript编写全栈应用程序,这一点大大提高了开发效率和便捷性。 在实践中,许多大型企业和组织已经采用Node.js作为其Web应用程序的开发平台,如Netflix、PayPal和Walmart等。它们利用Node.js提高了应用性能,简化了开发流程,并且能更快地响应市场需求。
recommend-type

课设毕设基于SSM的高校二手交易平台-LW+PPT+源码可运行.zip

课设毕设基于SSM的高校二手交易平台--LW+PPT+源码可运行
recommend-type

软件设计师讲义.md

软件设计师讲义.md
recommend-type

时间序列预测,股票方向应用,使用transformer-lstm融合的模型算法

适用人群 针对有一定机器学习和深度学习背景的专业人士,特别是那些对时间序列预测和Transformer以及LSTM模型有兴趣的人。需要一定的Python知识基础 适用场景 用于处理时间序列数据,尤其是在金融领域,示例是股票价格预测。Transformer模型和LSTM的混合使用表明,代码的目的是利用这两种模型的优势来提高预测准确性。 目标 代码的主要目标是利用Transformer模型和LSTM模型来预测时间序列数据,如股票价格。通过实现这两种模型,代码旨在提供一个强大的工具来进行更准确的时间序列分析和预测。
recommend-type

Autojs-PJYSDK-泡椒云网络验证-v1.15.zip

Autojs-PJYSDK-泡椒云网络验证-v1.15.zip
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

SPDK_NVMF_DISCOVERY_NQN是什么 有什么作用

SPDK_NVMF_DISCOVERY_NQN 是 SPDK (Storage Performance Development Kit) 中用于查询 NVMf (Non-Volatile Memory express over Fabrics) 存储设备名称的协议。NVMf 是一种基于网络的存储协议,可用于连接远程非易失性内存存储器。 SPDK_NVMF_DISCOVERY_NQN 的作用是让存储应用程序能够通过 SPDK 查询 NVMf 存储设备的名称,以便能够访问这些存储设备。通过查询 NVMf 存储设备名称,存储应用程序可以获取必要的信息,例如存储设备的IP地址、端口号、名称等,以便能
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。