飞行器参数辨识-极大似然估计

时间: 2024-02-11 21:03:08 浏览: 47
飞行器参数辨识是指通过观测数据对飞行器的未知参数进行估计的过程。其中,极大似然估计是一种常用的参数估计方法之一。 在飞行器参数辨识中,我们通常会收集到一系列的观测数据,例如飞行器的位置、速度、姿态等信息。这些观测数据与飞行器的参数之间存在着某种潜在的关系,我们的目标就是通过这些观测数据来估计出飞行器的参数。 极大似然估计是一种基于概率统计的方法,它假设观测数据是由某个概率分布生成的,并且通过最大化观测数据出现的概率来估计参数。具体来说,在飞行器参数辨识中,我们会假设观测数据服从某个概率分布,然后通过最大化观测数据出现的概率来找到最优的参数估计值。 在实际应用中,极大似然估计需要根据具体的问题和模型来选择合适的概率分布,并通过数学推导和优化算法来求解最优的参数估计值。常见的极大似然估计方法包括最大似然估计、最大后验估计等。 总结一下,飞行器参数辨识-极大似然估计是通过观测数据来估计飞行器的未知参数的方法,它基于概率统计的思想,通过最大化观测数据出现的概率来求解最优的参数估计值。
相关问题

利用极大似然估计辨识弹簧阻尼系统的参数

假设我们有一个弹簧阻尼系统,其中包括一个弹簧和一个阻尼器,但是我们并不知道弹簧的刚度和阻尼器的阻尼系数。我们可以通过极大似然估计来辨识这两个参数。 首先,我们需要建立弹簧阻尼系统的数学模型,包括系统的运动方程和载荷情况。假设我们通过施加一个外力$f(t)$来激励该系统,那么该系统的运动方程可以表示为: $$m\ddot{x}+c\dot{x}+kx=f(t)$$ 其中,$m$为系统的质量,$x$为系统的位移,$c$为阻尼系数,$k$为弹簧刚度。 接下来,我们需要采集系统在不同载荷情况下的位移、速度和加速度等数据。假设我们采集到了$n$组数据$(x_i,\dot{x}_i,\ddot{x}_i,f_i)$,其中$i=1,2,\cdots,n$。 我们可以假设噪声服从均值为$0$,标准差为$\sigma$的正态分布,即$\epsilon_i\sim N(0,\sigma^2)$。那么,我们可以将观测数据的概率密度函数表示为: $$p(x_i,\dot{x}_i,\ddot{x}_i,f_i\mid k,c)=\frac{1}{(2\pi\sigma^2)^{\frac{n}{2}}}\exp\left(-\frac{1}{2\sigma^2}\sum_{i=1}^{n}\epsilon_i^2\right)$$ 根据最大似然估计的原理,我们需要找到一组参数$k$和$c$,使得观测数据出现的概率最大。因此,我们需要最大化似然函数: $$L(k,c)=\prod_{i=1}^{n}p(x_i,\dot{x}_i,\ddot{x}_i,f_i\mid k,c)$$ 取对数并对参数$k$和$c$求偏导数,可以得到: $$\frac{\partial \ln L(k,c)}{\partial k}=\frac{1}{\sigma^2}\sum_{i=1}^{n}\epsilon_i\frac{\partial \epsilon_i}{\partial k}$$ $$\frac{\partial \ln L(k,c)}{\partial c}=\frac{1}{\sigma^2}\sum_{i=1}^{n}\epsilon_i\frac{\partial \epsilon_i}{\partial c}$$ 其中, $$\frac{\partial \epsilon_i}{\partial k}=\frac{\partial^2 x_i}{\partial t^2}+\frac{c}{m}\frac{\partial x_i}{\partial t}+\frac{k}{m}x_i-f_i$$ $$\frac{\partial \epsilon_i}{\partial c}=\frac{\partial x_i}{\partial t}+\frac{1}{m}\frac{\partial \epsilon_i}{\partial k}$$ 我们可以使用数值优化算法(如牛顿法、梯度下降法等)来求解最大似然估计的参数$k$和$c$。 最后,我们需要对参数进行验证和优化,如果发现模型和实际数据存在较大差异,可以对模型进行修改并重新进行参数辨识,直到得到符合实际要求的模型和参数。

利用极大似然估计辨识弹簧阻尼系统的参数matlab程序

下面是利用Matlab实现弹簧阻尼系统参数辨识的程序。假设已经采集到了$n$组数据$(x_i,\dot{x}_i,\ddot{x}_i,f_i)$,其中$i=1,2,\cdots,n$。 ```matlab % 弹簧阻尼系统参数辨识 % 建立模型 m = 1; % 质量 t = 0:0.01:10; % 时间 f = sin(t); % 施加的外力 k_true = 2; % 真实的弹簧刚度 c_true = 0.5; % 真实的阻尼系数 x_true = f/k_true; % 真实的位移 % 生成带噪声的数据 sigma = 0.1; % 噪声的标准差 x = x_true + sigma*randn(size(t)); % 带噪声的位移 v = gradient(x)./gradient(t); % 速度 a = gradient(v)./gradient(t); % 加速度 % 极大似然估计 fun = @(x)sum((a + x(2)/m.*v + x(1)/m.*x - f).^2); % 目标函数 x0 = [1 1]; % 初始值 x_est = fminsearch(fun, x0); % 求解最小值 k_est = x_est(1); % 估计的弹簧刚度 c_est = x_est(2); % 估计的阻尼系数 % 结果显示 fprintf('真实的弹簧刚度为%.2f,估计的弹簧刚度为%.2f\n', k_true, k_est); fprintf('真实的阻尼系数为%.2f,估计的阻尼系数为%.2f\n', c_true, c_est); % 绘图 figure; plot(t,x_true,'b-',t,x,'r.'); xlabel('时间'); ylabel('位移'); legend('真实的位移','带噪声的位移'); title('弹簧阻尼系统参数辨识'); ``` 注意,上述代码中的目标函数中的$a$、$v$、$x$和$f$分别表示观测数据中的加速度、速度、位移和外力,而$x(1)$和$x(2)$则分别表示弹簧刚度和阻尼系数的估计值。 程序运行后,会输出真实的弹簧刚度和阻尼系数,以及估计的弹簧刚度和阻尼系数。同时,程序还会绘制真实的位移和带噪声的位移随时间的变化关系,方便结果的可视化分析。

相关推荐

最新推荐

recommend-type

matlab系统辨识工具箱使用手册.pdf

2. 系统辨识实践工具--matlab辨识工具箱使用手册--System IdentLfication Toolbox user's guide matlab
recommend-type

工业机器人负载动力学参数辨识方法_陈友东.pdf

《工业机器人负载动力学参数辨识方法》这篇文章由陈友东和胡澜晓共同撰写,主要探讨了在工业机器人工作中由于负载变化导致的控制性能下降问题,并提出了一个针对这一问题的解决方案。文章在网络首发,其DOI为10....
recommend-type

系统辨识参数辨识matlab程序

系统辨识参数辨识 Matlab 程序 系统辨识是系统分析和设计的重要步骤,通过系统辨识可以获取系统的模型参数和脉冲响应函数。本文档主要介绍了系统辨识的 Matlab 程序,通过使用伪随机信号作为输入,应用相关分析法...
recommend-type

西门子S7-315与ABB变频器基于Profibus-Dp通讯

本地模式下,当参数 9910=0(OFF/IDMAGN)可进行辨识运行。 本文提供了西门子S7-315 PLC 与 ABB 变频器 ACS355 之间基于 Profibus-DP 通讯的详细配置和编程过程,旨在帮助初次使用该通讯协议的人员快速上手。
recommend-type

京瓷TASKalfa系列维修手册:安全与操作指南

"该资源是一份针对京瓷TASKalfa系列多款型号打印机的维修手册,包括TASKalfa 2020/2021/2057,TASKalfa 2220/2221,TASKalfa 2320/2321/2358,以及DP-480,DU-480,PF-480等设备。手册标注为机密,仅供授权的京瓷工程师使用,强调不得泄露内容。手册内包含了重要的安全注意事项,提醒维修人员在处理电池时要防止爆炸风险,并且应按照当地法规处理废旧电池。此外,手册还详细区分了不同型号产品的打印速度,如TASKalfa 2020/2021/2057的打印速度为20张/分钟,其他型号则分别对应不同的打印速度。手册还包括修订记录,以确保信息的最新和准确性。" 本文档详尽阐述了京瓷TASKalfa系列多功能一体机的维修指南,适用于多种型号,包括速度各异的打印设备。手册中的安全警告部分尤为重要,旨在保护维修人员、用户以及设备的安全。维修人员在操作前必须熟知这些警告,以避免潜在的危险,如不当更换电池可能导致的爆炸风险。同时,手册还强调了废旧电池的合法和安全处理方法,提醒维修人员遵守地方固体废弃物法规。 手册的结构清晰,有专门的修订记录,这表明手册会随着设备的更新和技术的改进不断得到完善。维修人员可以依靠这份手册获取最新的维修信息和操作指南,确保设备的正常运行和维护。 此外,手册中对不同型号的打印速度进行了明确的区分,这对于诊断问题和优化设备性能至关重要。例如,TASKalfa 2020/2021/2057系列的打印速度为20张/分钟,而TASKalfa 2220/2221和2320/2321/2358系列则分别具有稍快的打印速率。这些信息对于识别设备性能差异和优化工作流程非常有用。 总体而言,这份维修手册是京瓷TASKalfa系列设备维修保养的重要参考资料,不仅提供了详细的操作指导,还强调了安全性和合规性,对于授权的维修工程师来说是不可或缺的工具。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【进阶】入侵检测系统简介

![【进阶】入侵检测系统简介](http://www.csreviews.cn/wp-content/uploads/2020/04/ce5d97858653b8f239734eb28ae43f8.png) # 1. 入侵检测系统概述** 入侵检测系统(IDS)是一种网络安全工具,用于检测和预防未经授权的访问、滥用、异常或违反安全策略的行为。IDS通过监控网络流量、系统日志和系统活动来识别潜在的威胁,并向管理员发出警报。 IDS可以分为两大类:基于网络的IDS(NIDS)和基于主机的IDS(HIDS)。NIDS监控网络流量,而HIDS监控单个主机的活动。IDS通常使用签名检测、异常检测和行
recommend-type

轨道障碍物智能识别系统开发

轨道障碍物智能识别系统是一种结合了计算机视觉、人工智能和机器学习技术的系统,主要用于监控和管理铁路、航空或航天器的运行安全。它的主要任务是实时检测和分析轨道上的潜在障碍物,如行人、车辆、物体碎片等,以防止这些障碍物对飞行或行驶路径造成威胁。 开发这样的系统主要包括以下几个步骤: 1. **数据收集**:使用高分辨率摄像头、雷达或激光雷达等设备获取轨道周围的实时视频或数据。 2. **图像处理**:对收集到的图像进行预处理,包括去噪、增强和分割,以便更好地提取有用信息。 3. **特征提取**:利用深度学习模型(如卷积神经网络)提取障碍物的特征,如形状、颜色和运动模式。 4. **目标
recommend-type

小波变换在视频压缩中的应用

"多媒体通信技术视频信息压缩与处理(共17张PPT).pptx" 多媒体通信技术涉及的关键领域之一是视频信息压缩与处理,这在现代数字化社会中至关重要,尤其是在传输和存储大量视频数据时。本资料通过17张PPT详细介绍了这一主题,特别是聚焦于小波变换编码和分形编码两种新型的图像压缩技术。 4.5.1 小波变换编码是针对宽带图像数据压缩的一种高效方法。与离散余弦变换(DCT)相比,小波变换能够更好地适应具有复杂结构和高频细节的图像。DCT对于窄带图像信号效果良好,其变换系数主要集中在低频部分,但对于宽带图像,DCT的系数矩阵中的非零系数分布较广,压缩效率相对较低。小波变换则允许在频率上自由伸缩,能够更精确地捕捉图像的局部特征,因此在压缩宽带图像时表现出更高的效率。 小波变换与傅里叶变换有本质的区别。傅里叶变换依赖于一组固定频率的正弦波来表示信号,而小波分析则是通过母小波的不同移位和缩放来表示信号,这种方法对非平稳和局部特征的信号描述更为精确。小波变换的优势在于同时提供了时间和频率域的局部信息,而傅里叶变换只提供频率域信息,却丢失了时间信息的局部化。 在实际应用中,小波变换常常采用八带分解等子带编码方法,将低频部分细化,高频部分则根据需要进行不同程度的分解,以此达到理想的压缩效果。通过改变小波的平移和缩放,可以获取不同分辨率的图像,从而实现按需的图像质量与压缩率的平衡。 4.5.2 分形编码是另一种有效的图像压缩技术,特别适用于处理不规则和自相似的图像特征。分形理论源自自然界的复杂形态,如山脉、云彩和生物组织,它们在不同尺度上表现出相似的结构。通过分形编码,可以将这些复杂的形状和纹理用较少的数据来表示,从而实现高压缩比。分形编码利用了图像中的分形特性,将其转化为分形块,然后进行编码,这在处理具有丰富细节和不规则边缘的图像时尤其有效。 小波变换和分形编码都是多媒体通信技术中视频信息压缩的重要手段,它们分别以不同的方式处理图像数据,旨在减少存储和传输的需求,同时保持图像的质量。这两种技术在现代图像处理、视频编码标准(如JPEG2000)中都有广泛应用。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依