#IMPLIED是什么
时间: 2023-08-13 12:06:39 浏览: 170
#IMPLIED是HTML中属性声明的一种方式。当属性值没有被指定时,可以使用#IMPLIED声明,表示该属性是可选的,并且不需要指定一个默认值。在这种情况下,浏览器将根据上下文和默认规则来确定属性的值。#IMPLIED通常用于DTD(文档类型定义)中,用于定义特定的HTML文档类型中可以使用的属性。
相关问题
请帮我修改下面代码中的错误# -*- coding: utf-8 -*- """ Created on Sun May 28 18:08:36 2023 @author: lll """ import numpy as np import matplotlib.pyplot as plt from scipy.optimize import brentq from scipy.stats import norm # 定义BS模型计算期权价格的函数 def bs_price(S, K, r, T, sigma, option='call'): d1 = (np.log(S/K) + (r + 0.5*sigma**2)*T) / (sigma*np.sqrt(T)) d2 = d1 - sigma*np.sqrt(T) if option == 'call': price = S*norm.cdf(d1) - K*np.exp(-r*T)*norm.cdf(d2) else: price = K*np.exp(-r*T)*norm.cdf(-d2) - S*norm.cdf(-d1) return price # 定义计算隐含波动率的函数 def implied_vol(S, K, r, T, price, option='call'): def f(sigma): return bs_price(S, K, r, T, sigma, option) - price return brentq(f, 0.001, 10) # 定义计算波动率微笑图形的函数 def smile_vol(S, r, T, vol_list, K_list, option='call'): implied_vol_list = [] for K, vol in zip(K_list, vol_list): price = bs_price(S, K, r, T, vol, option) implied_vol_list.append(implied_vol(S, K, r, T, price, option)) plt.plot(K_list, implied_vol_list) plt.xlabel('Strike') plt.ylabel('Implied Volatility') plt.title('Volatility Smile') plt.show() # 示例代码 S = 100 r = 0.05 T = 1 K_list = np.arange(80, 121, 5) vol_call_list = [0.2, 0.3, 0.4, 0.5, 0.6] vol_put_list = [0.6, 0.5, 0.4, 0.3, 0.2] smile_vol(S, r, T, vol_call_list, K_list, option='call') smile_vol(S, r, T, vol_put_list, K_list, option='put')
这段代码看起来没有明显的语法错误,但是我注意到在函数`smile_vol`中,`vol_list`和`K_list`的长度必须相等,否则会出现错误。
如果你遇到了任何其他错误,请提供错误信息以便进一步调试。
以下是修改后的代码:
```python
# -*- coding: utf-8 -*-
"""
Created on Sun May 28 18:08:36 2023
@author: lll
"""
import numpy as np
import matplotlib.pyplot as plt
from scipy.optimize import brentq
from scipy.stats import norm
# 定义BS模型计算期权价格的函数
def bs_price(S, K, r, T, sigma, option='call'):
d1 = (np.log(S/K) + (r + 0.5*sigma**2)*T) / (sigma*np.sqrt(T))
d2 = d1 - sigma*np.sqrt(T)
if option == 'call':
price = S*norm.cdf(d1) - K*np.exp(-r*T)*norm.cdf(d2)
else:
price = K*np.exp(-r*T)*norm.cdf(-d2) - S*norm.cdf(-d1)
return price
# 定义计算隐含波动率的函数
def implied_vol(S, K, r, T, price, option='call'):
def f(sigma):
return bs_price(S, K, r, T, sigma, option) - price
return brentq(f, 0.001, 10)
# 定义计算波动率微笑图形的函数
def smile_vol(S, r, T, vol_list, K_list, option='call'):
if len(vol_list) != len(K_list):
raise ValueError("Lengths of vol_list and K_list must be equal.")
implied_vol_list = []
for K, vol in zip(K_list, vol_list):
price = bs_price(S, K, r, T, vol, option)
implied_vol_list.append(implied_vol(S, K, r, T, price, option))
plt.plot(K_list, implied_vol_list)
plt.xlabel('Strike')
plt.ylabel('Implied Volatility')
plt.title('Volatility Smile')
plt.show()
# 示例代码
S = 100
r = 0.05
T = 1
K_list = np.arange(80, 121, 5)
vol_call_list = [0.2, 0.3, 0.4, 0.5, 0.6]
vol_put_list = [0.6, 0.5, 0.4, 0.3, 0.2]
smile_vol(S, r, T, vol_call_list, K_list, option='call')
smile_vol(S, r, T, vol_put_list, K_list, option='put')
```
请将下面代码中的两张波动率微笑的图绘制到一张图中# -- coding: utf-8 -- """ Created on Sun May 28 18:08:36 2023 @author: lll """ import numpy as np import matplotlib.pyplot as plt from scipy.optimize import brentq from scipy.stats import norm # 定义BS模型计算期权价格的函数 def bs_price(S, K, r, T, sigma, option='call'): d1 = (np.log(S/K) + (r + 0.5sigma**2)T) / (sigmanp.sqrt(T)) d2 = d1 - sigmanp.sqrt(T) if option == 'call': price = Snorm.cdf(d1) - Knp.exp(-rT)norm.cdf(d2) else: price = Knp.exp(-rT)norm.cdf(-d2) - Snorm.cdf(-d1) return price # 定义计算隐含波动率的函数 def implied_vol(S, K, r, T, price, option='call'): def f(sigma): return bs_price(S, K, r, T, sigma, option) - price return brentq(f, 0.001, 10) # 定义计算波动率微笑图形的函数 def smile_vol(S, r, T, vol_list, K_list, option='call'): if len(vol_list) != len(K_list): raise ValueError("Lengths of vol_list and K_list must be equal.") implied_vol_list = [] for K, vol in zip(K_list, vol_list): price = bs_price(S, K, r, T, vol, option) implied_vol_list.append(implied_vol(S, K, r, T, price, option)) plt.plot(K_list, implied_vol_list) plt.xlabel('Strike') plt.ylabel('Implied Volatility') plt.title('Volatility Smile') plt.show() # 示例代码 S = 100 r = 0.05 T = 1 K_list = np.arange(80, 121, 9) vol_call_list = [0.2, 0.3, 0.4, 0.5, 0.6] vol_put_list = [0.6, 0.5, 0.4, 0.3, 0.2] smile_vol(S, r, T, vol_call_list, K_list, option='call') smile_vol(S, r, T, vol_put_list, K_list, option='put')
以下是将两张波动率微笑的图绘制到一张图中的代码:
```python
# 示例代码
S = 100
r = 0.05
T = 1
K_list = np.arange(80, 121, 9)
vol_call_list = [0.2, 0.3, 0.4, 0.5, 0.6]
vol_put_list = [0.6, 0.5, 0.4, 0.3, 0.2]
# 绘制波动率微笑图形
implied_vol_call_list = []
implied_vol_put_list = []
for K, vol_call, vol_put in zip(K_list, vol_call_list, vol_put_list):
price_call = bs_price(S, K, r, T, vol_call, option='call')
implied_vol_call_list.append(implied_vol(S, K, r, T, price_call, option='call'))
price_put = bs_price(S, K, r, T, vol_put, option='put')
implied_vol_put_list.append(implied_vol(S, K, r, T, price_put, option='put'))
plt.plot(K_list, implied_vol_call_list, label='Call')
plt.plot(K_list, implied_vol_put_list, label='Put')
plt.xlabel('Strike')
plt.ylabel('Implied Volatility')
plt.title('Volatility Smile')
plt.legend()
plt.show()
```
在这个代码中,我们首先计算出每个期权的隐含波动率,然后分别将call和put的隐含波动率绘制在同一张图上。我们使用 `label` 和 `legend` 来标记每个曲线。注意,这里我们需要同时计算call和put的隐含波动率,因为它们的波动率微笑图形通常是不对称的。
阅读全文