ValueError Traceback (most recent call last) Cell In[23], line 16 13 predicted = model.predict(unknown, verbose=1) 15 # 将预测结果保存到新的 CSV 文件中 ---> 16 result = pd.DataFrame(predicted, columns=['prediction']) 17 result.to_csv('predicted_result.csv', index=False) 18 print("输入的数据为: ") File ~\AppData\Roaming\Python\Python39\site-packages\pandas\core\frame.py:757, in DataFrame.__init__(self, data, index, columns, dtype, copy) 746 mgr = dict_to_mgr( 747 # error: Item "ndarray" of "Union[ndarray, Series, Index]" has no 748 # attribute "name" (...) 754 copy=_copy, 755 ) 756 else: --> 757 mgr = ndarray_to_mgr( 758 data, 759 index, 760 columns, 761 dtype=dtype, 762 copy=copy, 763 typ=manager, 764 ) 766 # For data is list-like, or Iterable (will consume into list) 767 elif is_list_like(data): File ~\AppData\Roaming\Python\Python39\site-packages\pandas\core\internals\construction.py:337, in ndarray_to_mgr(values, index, columns, dtype, copy, typ) 332 # _prep_ndarraylike ensures that values.ndim == 2 at this point 333 index, columns = _get_axes( 334 values.shape[0], values.shape[1], index=index, columns=columns 335 ) --> 337 _check_values_indices_shape_match(values, index, columns) 339 if typ == "array": 340 if issubclass(values.dtype.type, str): File ~\AppData\Roaming\Python\Python39\site-packages\pandas\core\internals\construction.py:408, in _check_values_indices_shape_match(values, index, columns) 406 passed = values.shape 407 implied = (len(index), len(columns)) --> 408 raise ValueError(f"Shape of passed values is {passed}, indices imply {implied}") ValueError: Shape of passed values is (1, 3), indices imply (1, 1)该怎么修改代码
时间: 2023-12-07 08:02:41 浏览: 222
根据错误提示,问题出在第16行,因为传递给DataFrame的数据形状不匹配。你可以尝试修改一下代码,在第16行的DataFrame构造函数中指定传递给它的数据应该是一个一维的数组,而不是一个二维的数组。这可以通过将参数`predicted`替换为`predicted.flatten()`来实现。修改后的代码如下所示:
```python
predicted = model.predict(unknown, verbose=1)
# 将预测结果保存到新的 CSV 文件中
result = pd.DataFrame(predicted.flatten(), columns=['prediction'])
result.to_csv('predicted_result.csv', index=False)
print("输入的数据为: ")
```
这样,你就可以将预测结果保存到CSV文件中了。
相关问题
train_predict = model.predict(X_train) test_predict = model.predict(X_test) train_predict = scaler.inverse_transform(train_predict) y_train = scaler.inverse_transform([y_train]) test_predict = scaler.inverse_transform(test_predict) y_test = scaler.inverse_transform([y_test]) plt.plot(y_train, label='train') plt.plot(train_predict, label='train predict') plt.plot(y_test, label='test') plt.plot(test_predict, label='test predict') plt.legend() plt.show()报错Traceback (most recent call last): File "C:\Users\马斌\Desktop\cnn测试\cnn改.py", line 48, in <module> train_predict = scaler.inverse_transform(train_predict) File "D:\python\python3.9.5\pythonProject\venv\lib\site-packages\sklearn\preprocessing\_data.py", line 541, in inverse_transform X -= self.min_ ValueError: non-broadcastable output operand with shape (110,1) doesn't match the broadcast shape (110,4)
这个错误通常是由于数组形状不兼容而导致的。在您的代码中,似乎您正在尝试将形状为(110,1)的数组与形状为(110,4)的数组进行广播操作,从而导致此错误。
您可以尝试使用 `reshape()` 方法来重新调整数组的形状,以确保它们具有兼容的形状。例如,如果您想将形状为(110,1)的数组转换为形状为(110,4)的数组,可以使用以下代码:
```python
train_predict = np.tile(train_predict, (1, 4))
```
这将使用 `tile()` 函数将 `train_predict` 数组沿列方向复制 4 次,以便它的形状变为(110,4)。然后,您可以再次尝试执行广播操作。
train_predict = model.predict(X_train) test_predict = model.predict(X_test) train_predict = scaler.inverse_transform(train_predict) y_train = scaler.inverse_transform([y_train]) train_predict = np.tile(train_predict, (1, 4)) #将train_predict复制4次,变为(110,4) train_predict = scaler.inverse_transform(train_predict) #进行逆归一化操作 y_train = np.tile(y_train, (1, 4)) #将y_train复制4次,变为(1, 440) y_train = scaler.inverse_transform(y_train.T) #进行逆归一化操作,并将结果reshape为(110,4) test_predict = scaler.inverse_transform(test_predict) y_test = scaler.inverse_transform([y_test])报错Traceback (most recent call last): File "C:\Users\马斌\Desktop\cnn测试\cnn改.py", line 47, in <module> train_predict = scaler.inverse_transform(train_predict) File "D:\python\python3.9.5\pythonProject\venv\lib\site-packages\sklearn\preprocessing_data.py", line 541, in inverse_transform X -= self.min_ ValueError: non-broadcastable output operand with shape (110,1) doesn't match the broadcast shape (110,4)如何修改代码
你需要将y_train的形状变为(110,4),可以使用numpy的reshape()函数。具体修改代码如下:
```
train_predict = model.predict(X_train)
test_predict = model.predict(X_test)
train_predict = scaler.inverse_transform(train_predict)
y_train = scaler.inverse_transform([y_train])
train_predict = np.tile(train_predict, (1, 4)) #将train_predict复制4次,变为(110,4)
train_predict = scaler.inverse_transform(train_predict) #进行逆归一化操作
y_train = np.tile(y_train, (1, 4)) #将y_train复制4次,变为(1, 440)
y_train = scaler.inverse_transform(y_train.T) #进行逆归一化操作,并将结果reshape为(110,4)
y_train = y_train.reshape(110, 4)
test_predict = scaler.inverse_transform(test_predict)
y_test = scaler.inverse_transform([y_test])
```
这样修改后,y_train的形状就变为了(110,4),可以进行逆归一化操作了。
阅读全文
相关推荐
![pdf](https://img-home.csdnimg.cn/images/20241231044930.png)
![pdf](https://img-home.csdnimg.cn/images/20241231044930.png)
![pdf](https://img-home.csdnimg.cn/images/20241231044930.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)