import pandas as pd import numpy as np import matplotlib.pyplot as plt import tensorflow as tf from tensorflow.keras.models import Sequential from tensorflow.keras.layers import LSTM, Dense data = pd.read_csv('车辆:274序:4结果数据.csv') x = data[['车头间距', '原车道前车速度']].values y = data['本车速度'].values train_size = int(len(x) * 0.7) test_size = len(x) - train_size x_train, x_test = x[0:train_size,:], x[train_size:len(x),:] y_train, y_test = y[0:train_size], y[train_size:len(y)] from sklearn.preprocessing import MinMaxScaler scaler = MinMaxScaler(feature_range=(0, 1)) x_train = scaler.fit_transform(x_train) x_test = scaler.transform(x_test) model = Sequential() model.add(LSTM(50, input_shape=(2, 1))) model.add(Dense(1)) model.compile(loss='mean_squared_error', optimizer='adam') history = model.fit(x_train.reshape(-1, 2, 1), y_train, epochs=100, batch_size=32, validation_data=(x_test.reshape(-1, 2, 1), y_test)) plt.plot(history.history['loss']) plt.plot(history.history['val_loss']) plt.title('Model loss') plt.ylabel('Loss') plt.xlabel('Epoch') plt.legend(['Train', 'Test'], loc='upper right') plt.show() train_predict = model.predict(x_train.reshape(-1, 2, 1)) test_predict = model.predict(x_test.reshape(-1, 2, 1)) train_predict = scaler.inverse_transform(train_predict) train_predict = train_predict.reshape(-1, 1) y_train = scaler.inverse_transform([y_train]) test_predict = scaler.inverse_transform(test_predict) y_test = scaler.inverse_transform([y_test]) plt.plot(y_train[0], label='train') plt.plot(train_predict[:,0], label='train predict') plt.plot(y_test[0], label='test') plt.plot(test_predict[:,0], label='test predict') plt.legend() plt.show()报错Traceback (most recent call last): File "C:\Users\马斌\Desktop\NGSIM_data_processing\80s\lstmtest.py", line 42, in <module> train_predict = scaler.inverse_transform(train_predict) File "D:\python\python3.9.5\pythonProject\venv\lib\site-packages\sklearn\preprocessing\_data.py", line 541, in inverse_transform X -= self.min_ ValueError: non-broadcastable output operand with shape (611,1) doesn't match the broadcast shape (611,2)
时间: 2023-12-24 07:06:44 浏览: 171
这个错误提示是因为在使用 `scaler.inverse_transform()` 函数时,输入的 `train_predict` 和 `y_train` 的维度不匹配,导致无法进行运算。具体来说,`train_predict` 是一个形状为 `(611, 1)` 的二维数组,而 `y_train` 是一个形状为 `(1, 611)` 的二维数组,因此无法直接进行运算。
你可以尝试使用以下代码将 `y_train` 转换为一维数组,再进行运算:
```
train_predict = scaler.inverse_transform(train_predict)
train_predict = train_predict.reshape(-1) # 将结果变为一维数组
y_train = scaler.inverse_transform(y_train.reshape(-1, 1)).reshape(-1) # 将结果变为一维数组
```
同样的,你也需要将 `y_test` 转换为一维数组,再进行相应的操作。
相关问题
import pandas as pd import numpy as np import tushare as ts from sklearn.preprocessing import MinMaxScaler import matplotlib.pyplot as plt import mplfinance as mpf from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Dense, LSTM
这是一段 Python 代码,导入了一些常用的数据分析和机器学习库,包括 Pandas、NumPy、Tushare、Sklearn、Matplotlib、mplfinance 和 TensorFlow。其中,Pandas 用于数据处理和分析,NumPy 用于科学计算,Tushare 用于获取股票数据,Sklearn 用于数据预处理,Matplotlib 和 mplfinance 用于数据可视化,TensorFlow 用于机器学习建模。这段代码还定义了一个 Sequential 模型,并导入了 Dense 和 LSTM 层,用于搭建神经网络模型。
import pandas as pd import numpy as np import datetime import matplotlib.pyplot as plt from pandas.plotting import radviz该环境下输出每次更新的权重的代码
好的,以下是一个基于TensorFlow的神经网络模型,可以输出每次更新的权重的代码:
```python
import tensorflow as tf
from tensorflow import keras
import pandas as pd
import numpy as np
# 加载数据集
data = pd.read_csv('data.csv')
labels = pd.read_csv('labels.csv')
# 构建模型
model = keras.Sequential([
keras.layers.Dense(128, input_shape=(data.shape[1],), activation='relu'),
keras.layers.Dense(64, activation='relu'),
keras.layers.Dense(1, activation='sigmoid')
])
# 定义回调函数
class MyCallback(tf.keras.callbacks.Callback):
def on_epoch_end(self, epoch, logs=None):
for layer in self.model.layers:
weights = layer.get_weights()
print(weights)
# 编译模型
model.compile(optimizer='adam',
loss='binary_crossentropy',
metrics=['accuracy'])
# 创建回调函数实例
callbacks = MyCallback()
# 训练模型
model.fit(data, labels, epochs=10, verbose=1, callbacks=[callbacks])
```
这个代码首先加载了数据集,然后定义了一个包含三个层的神经网络模型。模型的第一层是一个具有128个神经元的全连接层,使用ReLU激活函数。第二层是一个具有64个神经元的全连接层,同样使用ReLU激活函数。最后一层是一个具有1个神经元的全连接层,使用sigmoid激活函数。
接着,代码定义了一个回调函数MyCallback,当每个epoch结束时,该函数会输出每个层的权重。
然后,代码编译了模型,使用adam优化器和二元交叉熵损失函数进行训练,并在控制台输出了训练过程中的准确率等信息。使用callbacks=[callbacks]将回调函数传递给了fit()函数,以便在每个epoch结束时调用回调函数。
希望这个代码对你有所帮助!
阅读全文