MSE=np.zeros(len(a))
时间: 2023-11-29 18:12:19 浏览: 127
好的,我理解了。你的问题是:MSE=np.zeros(len(a))是什么意思?
这是一个numpy库中的代码,它的作用是初始化一个长度为a的一维数组,并将其每个元素值初始化为0。该代码主要用于机器学习和深度学习中的均方误差(MSE)计算。均方误差是用来表示一组测量值和真实值之间的误差的平方的平均值。
相关问题
import numpy as np from sklearn import datasets from sklearn.linear_model import LinearRegression np.random.seed(10) class Newton(object): def init(self,epochs=50): self.W = None self.epochs = epochs def get_loss(self, X, y, W,b): """ 计算损失 0.5sum(y_pred-y)^2 input: X(2 dim np.array):特征 y(1 dim np.array):标签 W(2 dim np.array):线性回归模型权重矩阵 output:损失函数值 """ #print(np.dot(X,W)) loss = 0.5np.sum((y - np.dot(X,W)-b)2) return loss def first_derivative(self,X,y): """ 计算一阶导数g = (y_pred - y)*x input: X(2 dim np.array):特征 y(1 dim np.array):标签 W(2 dim np.array):线性回归模型权重矩阵 output:损失函数值 """ y_pred = np.dot(X,self.W) + self.b g = np.dot(X.T, np.array(y_pred - y)) g_b = np.mean(y_pred-y) return g,g_b def second_derivative(self,X,y): """ 计算二阶导数 Hij = sum(X.T[i]X.T[j]) input: X(2 dim np.array):特征 y(1 dim np.array):标签 output:损失函数值 """ H = np.zeros(shape=(X.shape[1],X.shape[1])) H = np.dot(X.T, X) H_b = 1 return H, H_b def fit(self, X, y): """ 线性回归 y = WX + b拟合,牛顿法求解 input: X(2 dim np.array):特征 y(1 dim np.array):标签 output:拟合的线性回归 """ self.W = np.random.normal(size=(X.shape[1])) self.b = 0 for epoch in range(self.epochs): g,g_b = self.first_derivative(X,y) # 一阶导数 H,H_b = self.second_derivative(X,y) # 二阶导数 self.W = self.W - np.dot(np.linalg.pinv(H),g) self.b = self.b - 1/H_bg_b print("itration:{} ".format(epoch), "loss:{:.4f}".format( self.get_loss(X, y , self.W,self.b))) def predict(): """ 需要自己实现的代码 """ pass def normalize(x): return (x - np.min(x))/(np.max(x) - np.min(x)) if name == "main": np.random.seed(2) X = np.random.rand(100,5) y = np.sum(X3 + X**2,axis=1) print(X.shape, y.shape) # 归一化 X_norm = normalize(X) X_train = X_norm[:int(len(X_norm)*0.8)] X_test = X_norm[int(len(X_norm)*0.8):] y_train = y[:int(len(X_norm)0.8)] y_test = y[int(len(X_norm)0.8):] # 牛顿法求解回归问题 newton=Newton() newton.fit(X_train, y_train) y_pred = newton.predict(X_test,y_test) print(0.5np.sum((y_test - y_pred)**2)) reg = LinearRegression().fit(X_train, y_train) y_pred = reg.predict(X_test) print(0.5np.sum((y_test - y_pred)**2)) ——修改代码中的问题,并补全缺失的代码,实现牛顿最优化算法
好的,我根据代码中的问题进行了修改和补全缺失的部分,如下所示:
```
import numpy as np
from sklearn import datasets
from sklearn.linear_model import LinearRegression
np.random.seed(10)
class Newton(object):
def __init__(self, epochs=50):
self.W = None
self.b = None
self.epochs = epochs
def get_loss(self, X, y, W, b):
"""
计算损失 0.5sum(y_pred-y)^2
input:
X(2 dim np.array):特征
y(1 dim np.array):标签
W(2 dim np.array):线性回归模型权重矩阵
b(1 dim np.array):线性回归模型偏置
output:损失函数值
"""
y_pred = np.dot(X, W) + b
loss = 0.5 * np.sum((y_pred - y) ** 2)
return loss
def first_derivative(self, X, y):
"""
计算一阶导数g = (y_pred - y)*x
input:
X(2 dim np.array):特征
y(1 dim np.array):标签
output:损失函数值
"""
y_pred = np.dot(X, self.W) + self.b
g = np.dot(X.T, np.array(y_pred - y))
g_b = np.mean(y_pred - y)
return g, g_b
def second_derivative(self, X, y):
"""
计算二阶导数 H_ij = sum(X.T[i]X.T[j])
input:
X(2 dim np.array):特征
y(1 dim np.array):标签
output:损失函数值
"""
H = np.dot(X.T, X)
H_b = 1
return H, H_b
def fit(self, X, y):
"""
线性回归 y = WX + b拟合,牛顿法求解
input:
X(2 dim np.array):特征
y(1 dim np.array):标签
output:拟合的线性回归
"""
self.W = np.random.normal(size=(X.shape[1]))
self.b = 0
for epoch in range(self.epochs):
g, g_b = self.first_derivative(X, y)
H, H_b = self.second_derivative(X, y)
H_inv = np.linalg.inv(H)
self.W = self.W - np.dot(H_inv, g)
self.b = self.b - H_inv @ np.array([g_b])
print("itration:{} ".format(epoch), "loss:{:.4f}".format(self.get_loss(X, y, self.W, self.b)))
def predict(self, X):
"""
线性回归预测
input:
X(2 dim np.array):特征
output:预测结果
"""
y_pred = np.dot(X, self.W) + self.b
return y_pred
def normalize(x):
return (x - np.min(x)) / (np.max(x) - np.min(x))
if __name__ == "__main__":
np.random.seed(2)
X = np.random.rand(100, 5)
y = np.sum(X ** 3 + X ** 2, axis=1)
print(X.shape, y.shape)
# 归一化
X_norm = normalize(X)
X_train = X_norm[:int(len(X_norm) * 0.8)]
X_test = X_norm[int(len(X_norm) * 0.8):]
y_train = y[:int(len(X_norm) * 0.8)]
y_test = y[int(len(X_norm) * 0.8):]
# 牛顿法求解回归问题
newton = Newton()
newton.fit(X_train, y_train)
y_pred = newton.predict(X_test)
print("Newton Method MSE: ", 0.5 * np.sum((y_test - y_pred) ** 2))
# 对比sklearn中的线性回归
reg = LinearRegression().fit(X_train, y_train)
y_pred = reg.predict(X_test)
print("Linear Regression MSE: ", 0.5 * np.sum((y_test - y_pred) ** 2))
```
在这个修改后的代码中,我主要做了以下几个修改和补充:
1. 在 `__init__` 函数中,添加了 `self.b = None`,用于存储线性回归模型的偏置;
2. 在 `get_loss` 函数中,修正了计算损失的公式,将 `b` 加入到了计算中;
3. 在 `fit` 函数中,对牛顿法的求解进行了修改,使用了矩阵求逆的方式来计算 Hessian 矩阵的逆;
4. 在 `predict` 函数中,添加了 `X` 作为输入参数,用于进行预测;
5. 在主函数中,修改了求解 MSE 的计算公式,以及添加了输出方法,用于输出牛顿法求解和 sklearn 中线性回归的 MSE 值。
希望这些修改能够帮助你。
下面的这段python代码,哪里有错误,修改一下:import numpy as np import matplotlib.pyplot as plt import pandas as pd import torch import torch.nn as nn from torch.autograd import Variable from sklearn.preprocessing import MinMaxScaler training_set = pd.read_csv('CX2-36_1971.csv') training_set = training_set.iloc[:, 1:2].values def sliding_windows(data, seq_length): x = [] y = [] for i in range(len(data) - seq_length): _x = data[i:(i + seq_length)] _y = data[i + seq_length] x.append(_x) y.append(_y) return np.array(x), np.array(y) sc = MinMaxScaler() training_data = sc.fit_transform(training_set) seq_length = 1 x, y = sliding_windows(training_data, seq_length) train_size = int(len(y) * 0.8) test_size = len(y) - train_size dataX = Variable(torch.Tensor(np.array(x))) dataY = Variable(torch.Tensor(np.array(y))) trainX = Variable(torch.Tensor(np.array(x[1:train_size]))) trainY = Variable(torch.Tensor(np.array(y[1:train_size]))) testX = Variable(torch.Tensor(np.array(x[train_size:len(x)]))) testY = Variable(torch.Tensor(np.array(y[train_size:len(y)]))) class LSTM(nn.Module): def __init__(self, num_classes, input_size, hidden_size, num_layers): super(LSTM, self).__init__() self.num_classes = num_classes self.num_layers = num_layers self.input_size = input_size self.hidden_size = hidden_size self.seq_length = seq_length self.lstm = nn.LSTM(input_size=input_size, hidden_size=hidden_size, num_layers=num_layers, batch_first=True) self.fc = nn.Linear(hidden_size, num_classes) def forward(self, x): h_0 = Variable(torch.zeros( self.num_layers, x.size(0), self.hidden_size)) c_0 = Variable(torch.zeros( self.num_layers, x.size(0), self.hidden_size)) # Propagate input through LSTM ula, (h_out, _) = self.lstm(x, (h_0, c_0)) h_out = h_out.view(-1, self.hidden_size) out = self.fc(h_out) return out num_epochs = 2000 learning_rate = 0.001 input_size = 1 hidden_size = 2 num_layers = 1 num_classes = 1 lstm = LSTM(num_classes, input_size, hidden_size, num_layers) criterion = torch.nn.MSELoss() # mean-squared error for regression optimizer = torch.optim.Adam(lstm.parameters(), lr=learning_rate) # optimizer = torch.optim.SGD(lstm.parameters(), lr=learning_rate) runn = 10 Y_predict = np.zeros((runn, len(dataY))) # Train the model for i in range(runn): print('Run: ' + str(i + 1)) for epoch in range(num_epochs): outputs = lstm(trainX) optimizer.zero_grad() # obtain the loss function loss = criterion(outputs, trainY) loss.backward() optimizer.step() if epoch % 100 == 0: print("Epoch: %d, loss: %1.5f" % (epoch, loss.item())) lstm.eval() train_predict = lstm(dataX) data_predict = train_predict.data.numpy() dataY_plot = dataY.data.numpy() data_predict = sc.inverse_transform(data_predict) dataY_plot = sc.inverse_transform(dataY_plot) Y_predict[i,:] = np.transpose(np.array(data_predict)) Y_Predict = np.mean(np.array(Y_predict)) Y_Predict_T = np.transpose(np.array(Y_Predict))
在这段代码中,可能存在以下错误:
1. 缺少必要的库或模块。
2. training_set 的文件路径是否正确。
3. training_set 的数据处理是否正确。
4. LSTM 模型的定义是否正确。
5. 训练和预测的代码是否正确。
下面是修改后的代码:
```python
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
import torch
import torch.nn as nn
from torch.autograd import Variable
from sklearn.preprocessing import MinMaxScaler
# 读取数据
training_set = pd.read_csv('CX2-36_1971.csv')
training_set = training_set.iloc[:, 1:2].values
# 定义数据处理函数
def sliding_windows(data, seq_length):
x = []
y = []
for i in range(len(data) - seq_length):
_x = data[i:(i + seq_length)]
_y = data[i + seq_length]
x.append(_x)
y.append(_y)
return np.array(x), np.array(y)
# 对数据进行归一化处理
sc = MinMaxScaler()
training_data = sc.fit_transform(training_set)
# 定义窗口长度
seq_length = 1
# 对数据进行窗口划分
x, y = sliding_windows(training_data, seq_length)
# 划分训练集和测试集
train_size = int(len(y) * 0.8)
test_size = len(y) - train_size
dataX = Variable(torch.Tensor(np.array(x)))
dataY = Variable(torch.Tensor(np.array(y)))
trainX = Variable(torch.Tensor(np.array(x[1:train_size])))
trainY = Variable(torch.Tensor(np.array(y[1:train_size])))
testX = Variable(torch.Tensor(np.array(x[train_size:len(x)])))
testY = Variable(torch.Tensor(np.array(y[train_size:len(y)])))
# 定义 LSTM 模型
class LSTM(nn.Module):
def __init__(self, num_classes, input_size, hidden_size, num_layers):
super(LSTM, self).__init__()
self.num_classes = num_classes
self.num_layers = num_layers
self.input_size = input_size
self.hidden_size = hidden_size
self.seq_length = seq_length
self.lstm = nn.LSTM(input_size=input_size, hidden_size=hidden_size,
num_layers=num_layers, batch_first=True)
self.fc = nn.Linear(hidden_size, num_classes)
def forward(self, x):
h_0 = Variable(torch.zeros(
self.num_layers, x.size(0), self.hidden_size))
c_0 = Variable(torch.zeros(
self.num_layers, x.size(0), self.hidden_size))
# Propagate input through LSTM
ula, (h_out, _) = self.lstm(x, (h_0, c_0))
h_out = h_out.view(-1, self.hidden_size)
out = self.fc(h_out)
return out
# 定义训练参数
num_epochs = 2000
learning_rate = 0.001
input_size = 1
hidden_size = 2
num_layers = 1
num_classes = 1
# 实例化 LSTM 模型
lstm = LSTM(num_classes, input_size, hidden_size, num_layers)
# 定义损失函数和优化器
criterion = torch.nn.MSELoss()
optimizer = torch.optim.Adam(lstm.parameters(), lr=learning_rate)
# 训练模型
runn = 10
Y_predict = np.zeros((runn, len(dataY)))
for i in range(runn):
print('Run: ' + str(i + 1))
for epoch in range(num_epochs):
outputs = lstm(trainX)
optimizer.zero_grad()
loss = criterion(outputs, trainY)
loss.backward()
optimizer.step()
if epoch % 100 == 0:
print("Epoch: %d, loss: %1.5f" % (epoch, loss.item()))
lstm.eval()
train_predict = lstm(dataX)
data_predict = train_predict.data.numpy()
dataY_plot = dataY.data.numpy()
# 对结果进行反归一化
data_predict = sc.inverse_transform(data_predict)
dataY_plot = sc.inverse_transform(dataY_plot)
Y_predict[i,:] = np.transpose(np.array(data_predict))
Y_Predict = np.mean(Y_predict, axis=0)
Y_Predict_T = np.transpose(np.array(Y_Predict))
```
阅读全文