nn.Parameter(torch.ones(1), requires_grad=True)
时间: 2024-05-22 14:10:52 浏览: 333
这行代码是在PyTorch中创建一个可训练的参数。`torch.ones(1)`创建了一个值为1的张量,并将其封装在`nn.Parameter`对象中。`requires_grad=True`参数指示PyTorch需要计算这个参数的梯度,以便在反向传播期间进行优化。在训练模型时,这些可训练的参数是模型学习的主要目标。
相关问题
class LayerNorm(nn.Module): def __init__(self, normalized_shape, eps=1e-6, data_format="channels_last"): super(LayerNorm, self).__init__() self.weight = nn.Parameter(torch.ones(normalized_shape), requires_grad=True) self.bias = nn.Parameter(torch.zeros(normalized_shape), requires_grad=True) self.eps = eps self.data_format = data_format if self.data_format not in ['channels_last', 'channels_first']: raise ValueError(f"not support data format'{self.data_format}'") self.normalized_shape = (normalized_shape,) def forward(self, x: torch.Tensor) -> torch.Tensor: if self.data_format == 'channels_last': return F.layer_norm(x, self.normalized_shape, self.weight, self.bias, self.eps) elif self.data_format == 'channels_first': # [B,C,H,W] mean = x.mean(1, keepdim=True) var = (x - mean).pow(2).mean(1, keepdim=True) x = (x - mean) / torch.sqrt(var + self.eps) x = self.weight[:, None, None] * x + self.bias[:, None, None] return x
这段代码实现了Layer Normalization(层归一化)的功能。Layer Normalization是一种用于神经网络的归一化方法,可以在训练过程中稳定神经网络的学习。
在代码中,LayerNorm类继承自nn.Module,并实现了初始化方法和前向传播方法。
在初始化方法中,normalized_shape参数指定了归一化的维度大小,eps参数用于防止除零错误,data_format参数用于指定输入数据的格式('channels_last'或'channels_first')。
前向传播方法中,根据输入数据的格式进行不同的处理。当data_format为'channels_last'时,调用了PyTorch中的F.layer_norm函数进行归一化操作。当data_format为'channels_first'时,首先计算输入数据的均值和方差,然后进行归一化操作,并使用参数weight和bias进行缩放和偏移。
最后返回归一化后的结果。
class HorBlock(nn.Module):# HorBlock模块 r""" HorNet block yoloair """ def __init__(self, dim, drop_path=0., layer_scale_init_value=1e-6, gnconv=gnconv):# dummy super().__init__() self.norm1 = HorLayerNorm(dim, eps=1e-6, data_format='channels_first') self.gnconv = gnconv(dim) self.norm2 = HorLayerNorm(dim, eps=1e-6) self.pwconv1 = nn.Linear(dim, 4 * dim) self.act = nn.GELU() self.pwconv2 = nn.Linear(4 * dim, dim) self.gamma1 = nn.Parameter(layer_scale_init_value * torch.ones(dim), requires_grad=True) if layer_scale_init_value > 0 else None self.gamma2 = nn.Parameter(layer_scale_init_value * torch.ones((dim)), requires_grad=True) if layer_scale_init_value > 0 else None self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() def forward(self, x): B, C, H, W = x.shape # [512] if self.gamma1 is not None: gamma1 = self.gamma1.view(C, 1, 1) else: gamma1 = 1 x = x + self.drop_path(gamma1 * self.gnconv(self.norm1(x))) input = x x = x.permute(0, 2, 3, 1) # (N, C, H, W) -> (N, H, W, C) x = self.norm2(x) x = self.pwconv1(x) x = self.act(x) x = self.pwconv2(x) if self.gamma2 is not None: x = self.gamma2 * x x = x.permute(0, 3, 1, 2) # (N, H, W, C) -> (N, C, H, W) x = input + self.drop_path(x) return x
这是一个PyTorch中定义的HorBlock模块,它是用于构建卷积神经网络的模块。该模块包含了一些常见的层和操作,比如归一化层、线性层、激活函数等。其前向传递函数的实现过程为:
1. 对输入进行归一化,使用HorLayerNorm层;
2. 对归一化后的输入进行卷积操作,使用gnconv层;
3. 将卷积后的输出再次进行归一化,使用HorLayerNorm层;
4. 对归一化后的输出进行线性变换,使用pwconv1层;
5. 对pwconv1层的输出进行激活函数处理,使用GELU激活函数;
6. 对激活函数处理后的输出进行线性变换,使用pwconv2层;
7. 最后将pwconv2层的输出加上残差输入,并进行一定的dropout处理。
HorBlock模块是横向的卷积块,其可以在卷积神经网络中起到增加模型深度、提升模型性能等作用。
阅读全文