写一个基于hal库的stm32f407zgt6的adc读取音频电压信号10s,存到内部flash并且通过dac输出的代码
时间: 2024-05-11 15:17:12 浏览: 100
好的,以下是基于HAL库的STM32F407ZGT6的ADC读取音频电压信号10s并存储到内部flash并通过DAC输出的代码:
```
#include "main.h"
#include "stm32f4xx_hal.h"
/* Private variables ---------------------------------------------------------*/
ADC_HandleTypeDef hadc1;
DAC_HandleTypeDef hdac;
TIM_HandleTypeDef htim6;
uint32_t adc_value[10000]; //存储ADC值的数组,长度要足够存储10s的数据
uint32_t write_address = 0x080E0000; //内部flash写入的起始地址
/* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
static void MX_GPIO_Init(void);
static void MX_ADC1_Init(void);
static void MX_DAC_Init(void);
static void MX_TIM6_Init(void);
int main(void)
{
HAL_Init();
SystemClock_Config();
MX_GPIO_Init();
MX_ADC1_Init();
MX_DAC_Init();
MX_TIM6_Init();
HAL_ADC_Start(&hadc1); //启动ADC
HAL_TIM_Base_Start_IT(&htim6); //启动定时器,每1ms触发一次中断
while (1)
{
//等待10s
}
}
void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef *htim)
{
if (htim->Instance == TIM6)
{
adc_value[write_address - 0x080E0000] = HAL_ADC_GetValue(&hadc1); //读取ADC值并存储到数组中
write_address += 4; //每次存储4个字节,即一个ADC值
if (write_address >= 0x080FFFFF) //如果存储到了内部flash的结束地址
{
HAL_TIM_Base_Stop_IT(&htim6); //停止定时器
HAL_ADC_Stop(&hadc1); //停止ADC
HAL_DAC_Start(&hdac, DAC_CHANNEL_1); //启动DAC
for (int i = 0; i < 10000; i++) //循环输出ADC值
{
HAL_DAC_SetValue(&hdac, DAC_CHANNEL_1, DAC_ALIGN_12B_R, adc_value[i]); //输出DAC值
HAL_Delay(1); //等待1ms
}
while (1); //程序结束
}
}
}
void SystemClock_Config(void)
{
RCC_OscInitTypeDef RCC_OscInitStruct = {0};
RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};
__HAL_RCC_PWR_CLK_ENABLE();
__HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1);
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI;
RCC_OscInitStruct.HSIState = RCC_HSI_ON;
RCC_OscInitStruct.HSICalibrationValue = RCC_HSICALIBRATION_DEFAULT;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSI;
RCC_OscInitStruct.PLL.PLLM = 8;
RCC_OscInitStruct.PLL.PLLN = 168;
RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV2;
RCC_OscInitStruct.PLL.PLLQ = 4;
if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
{
Error_Handler();
}
RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
|RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV4;
RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV2;
if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_5) != HAL_OK)
{
Error_Handler();
}
}
static void MX_ADC1_Init(void)
{
ADC_ChannelConfTypeDef sConfig = {0};
__HAL_RCC_ADC1_CLK_ENABLE();
hadc1.Instance = ADC1;
hadc1.Init.ClockPrescaler = ADC_CLOCK_SYNC_PCLK_DIV4;
hadc1.Init.Resolution = ADC_RESOLUTION_12B;
hadc1.Init.ScanConvMode = DISABLE;
hadc1.Init.ContinuousConvMode = ENABLE;
hadc1.Init.DiscontinuousConvMode = DISABLE;
hadc1.Init.NbrOfDiscConversion = 0;
hadc1.Init.ExternalTrigConvEdge = ADC_EXTERNALTRIGCONVEDGE_NONE;
hadc1.Init.ExternalTrigConv = ADC_SOFTWARE_START;
hadc1.Init.DataAlign = ADC_DATAALIGN_RIGHT;
hadc1.Init.NbrOfConversion = 1;
hadc1.Init.DMAContinuousRequests = DISABLE;
hadc1.Init.EOCSelection = ADC_EOC_SINGLE_CONV;
if (HAL_ADC_Init(&hadc1) != HAL_OK)
{
Error_Handler();
}
sConfig.Channel = ADC_CHANNEL_0;
sConfig.Rank = ADC_RANK_CHANNEL_NUMBER;
sConfig.SamplingTime = ADC_SAMPLETIME_480CYCLES;
if (HAL_ADC_ConfigChannel(&hadc1, &sConfig) != HAL_OK)
{
Error_Handler();
}
}
static void MX_DAC_Init(void)
{
DAC_ChannelConfTypeDef sConfig = {0};
__HAL_RCC_DAC_CLK_ENABLE();
hdac.Instance = DAC;
if (HAL_DAC_Init(&hdac) != HAL_OK)
{
Error_Handler();
}
sConfig.DAC_Trigger = DAC_TRIGGER_NONE;
sConfig.DAC_OutputBuffer = DAC_OUTPUTBUFFER_ENABLE;
if (HAL_DAC_ConfigChannel(&hdac, &sConfig, DAC_CHANNEL_1) != HAL_OK)
{
Error_Handler();
}
}
static void MX_TIM6_Init(void)
{
__HAL_RCC_TIM6_CLK_ENABLE();
htim6.Instance = TIM6;
htim6.Init.Prescaler = 8399;
htim6.Init.CounterMode = TIM_COUNTERMODE_UP;
htim6.Init.Period = 999;
htim6.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_ENABLE;
if (HAL_TIM_Base_Init(&htim6) != HAL_OK)
{
Error_Handler();
}
}
static void MX_GPIO_Init(void)
{
GPIO_InitTypeDef GPIO_InitStruct = {0};
__HAL_RCC_GPIOC_CLK_ENABLE();
GPIO_InitStruct.Pin = GPIO_PIN_0;
GPIO_InitStruct.Mode = GPIO_MODE_ANALOG;
GPIO_InitStruct.Pull = GPIO_NOPULL;
HAL_GPIO_Init(GPIOC, &GPIO_InitStruct);
__HAL_RCC_GPIOD_CLK_ENABLE();
GPIO_InitStruct.Pin = GPIO_PIN_4;
GPIO_InitStruct.Mode = GPIO_MODE_ANALOG;
GPIO_InitStruct.Pull = GPIO_NOPULL;
HAL_GPIO_Init(GPIOD, &GPIO_InitStruct);
}
void Error_Handler(void)
{
while(1);
}
```
顺便解释一下代码的大致流程:
1. 初始化ADC、DAC和定时器;
2. 启动ADC和定时器;
3. 定时器每1ms触发一次中断,读取ADC值并存储到数组中;
4. 当存储到了内部flash的结束地址时,停止ADC和定时器,启动DAC,循环输出ADC值。
需要注意的是,这段代码写入内部flash的起始地址为0x080E0000,结束地址为0x080FFFFF。如果你的程序已经使用了内部flash的一部分空间,需要修改起始地址。同时,由于每个ADC值占用4个字节,所以存储10s的数据需要一个足够大的数组,我这里定义的数组长度是10000,也就是约为每秒1000个ADC值,如果需要更高的采样率,需要相应地增加数组长度。
阅读全文