怎么用python代码结合jieba分词优化snowNLP文本情感分析效果
时间: 2024-05-03 09:16:26 浏览: 193
首先,需要安装jieba和snowNLP库:
```
pip install jieba
pip install snownlp
```
然后,可以按照以下步骤使用python代码结合jieba分词优化snowNLP文本情感分析效果:
1. 导入所需库和模块:
```python
import jieba
from snownlp import SnowNLP
```
2. 加载自定义情感词典和停用词:
```python
s = SnowNLP('') # 加载默认情感词典
s.add_sentiment('自定义情感词', 0.8) # 加载自定义情感词典
jieba.load_userdict('自定义词典路径') # 加载自定义词典
stopwords = [line.strip() for line in open('停用词表路径', 'r', encoding='utf-8').readlines()] # 加载停用词表
```
3. 对文本进行分词和去停用词处理:
```python
text = "这部电影太棒了,我非常喜欢!"
words = jieba.cut(text)
words = [word for word in words if word not in stopwords]
```
4. 对分词后的文本进行情感分析:
```python
sentiments = [SnowNLP(word).sentiments for word in words]
score = sum(sentiments) / len(sentiments)
```
5. 根据得分判断情感极性:
```python
if score >= 0.6:
print("正向情感")
else:
print("负向情感")
```
以上就是使用python代码结合jieba分词优化snowNLP文本情感分析效果的方法。
阅读全文
相关推荐
















