python对csv文件中某列数据进行文本分词、去停用词、高频词提取、语义网络分析、文本情感分析详细代码编写及代码详解
时间: 2023-10-20 10:22:52 浏览: 171
去停用词_利用python去停用词_
5星 · 资源好评率100%
由于任务较为复杂,需要使用多个第三方库,以下是详细代码及代码解释:
1. 导入所需库
```python
import csv
import jieba
import jieba.analyse
import networkx as nx
import matplotlib.pyplot as plt
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.decomposition import LatentDirichletAllocation
from snownlp import SnowNLP
```
2. 读取csv文件中需要处理的列数据
```python
data = []
with open('data.csv', 'r', encoding='utf-8') as f:
reader = csv.reader(f)
for row in reader:
data.append(row[1]) # 假设需要处理的列为第二列
```
3. 对每个文本进行分词和去停用词处理
```python
stopwords = [line.strip() for line in open('stopwords.txt', 'r', encoding='utf-8').readlines()] # 读取停用词表
corpus = []
for text in data:
words = [word for word in jieba.cut(text) if word not in stopwords] # 分词并去停用词
corpus.append(' '.join(words)) # 将分词后的词语用空格连接成字符串
```
4. 对整个语料库进行高频词提取
```python
keywords = jieba.analyse.extract_tags(' '.join(corpus), topK=10, withWeight=True, allowPOS=('n', 'ns', 'vn', 'v')) # 提取名词、地名、动名词、动词
for keyword, weight in keywords:
print(keyword, weight)
```
5. 构建语义网络
```python
vectorizer = CountVectorizer()
X = vectorizer.fit_transform(corpus)
terms = vectorizer.get_feature_names() # 获取所有单词
model = LatentDirichletAllocation(n_components=5, max_iter=50, learning_method='online', learning_offset=50., random_state=0).fit(X) # 使用LDA模型进行主题建模
topic_words = []
for topic_idx, topic in enumerate(model.components_):
word_idx = topic.argsort()[::-1][:10] # 获取每个主题中权重最高的10个单词索引
topic_words.append([terms[i] for i in word_idx]) # 将每个主题中的单词转换为实际单词
G = nx.Graph()
for topic in topic_words:
G.add_nodes_from(topic) # 将每个主题中的单词添加到语义网络中
for i in range(len(topic_words)):
for j in range(i+1, len(topic_words)):
for word1 in topic_words[i]:
for word2 in topic_words[j]:
if word1 != word2:
G.add_edge(word1, word2) # 将两个主题中的单词之间存在共现关系的单词连接起来
nx.draw(G, with_labels=True)
plt.show()
```
6. 对每个文本进行情感分析
```python
for text in corpus:
s = SnowNLP(text)
print('Text:', text)
print('Sentiment:', s.sentiments)
```
以上就是对csv文件中某列数据进行文本分词、去停用词、高频词提取、语义网络分析、文本情感分析的详细代码及代码解释。
阅读全文