np.linalg.inv(cov)
时间: 2024-04-29 15:20:04 浏览: 114
这是一个用于计算矩阵的逆的 numpy 函数,其中 cov 是一个方阵(即行数和列数相等的矩阵),它的逆矩阵可以将其与原矩阵相乘得到单位矩阵。在统计学和机器学习中,常常使用协方差矩阵(covariance matrix)来描述多维随机变量之间的关系,而求解协方差矩阵的逆矩阵可以用于多元高斯分布的概率密度函数的计算。
相关问题
翻译这段代码class GPR: def __init__(self, optimize=True): self.is_fit = False self.train_X, self.train_y = None, None self.params = {"l": 2, "sigma_f": 1} self.optimize = optimize def fit(self, X, y): # store train data self.train_X = np.asarray(X) self.train_y = np.asarray(y) # hyper parameters optimization def negative_log_likelihood_loss(params): self.params["l"], self.params["sigma_f"] = params[0], params[1] Kyy = self.kernel(self.train_X, self.train_X) + 1e-8 * np.eye(len(self.train_X)) loss = 0.5 * self.train_y.T.dot(np.linalg.inv(Kyy)).dot(self.train_y) + 0.5 * np.linalg.slogdet(Kyy)[ 1] + 0.5 * len(self.train_X) * np.log(2 * np.pi) return loss.ravel() if self.optimize: res = minimize(negative_log_likelihood_loss, [self.params["l"], self.params["sigma_f"]],bounds=((1e-4, 1e4), (1e-4, 1e4)),method='L-BFGS-B') self.params["l"], self.params["sigma_f"] = res.x[0], res.x[1] self.is_fit = True def predict(self, X): if not self.is_fit: print("GPR Model not fit yet.") return X = np.asarray(X) Kff = self.kernel(self.train_X, self.train_X) # (N, N) Kyy = self.kernel(X, X) # (k, k) Kfy = self.kernel(self.train_X, X) # (N, k) Kff_inv = np.linalg.inv(Kff + 0.5e-3 * np.eye(len(self.train_X))) # (N, N) mu = Kfy.T.dot(Kff_inv).dot(self.train_y) cov = Kyy - Kfy.T.dot(Kff_inv).dot(Kfy) return mu, cov def kernel(self, x1, x2): dist_matrix = np.sum(x1 ** 2, 1).reshape(-1, 1) + np.sum(x2 ** 2, 1) - 2 * np.dot(x1, x2.T) return self.params["sigma_f"] ** 2 * np.exp(-0.5 / self.params["l"] ** 2 * dist_matrix)
以上代码是一个名为GPR的类的定义,其中包含一个初始化函数__init__,和一个适应函数fit。
在初始化函数中,self.is_fit被赋值为False,self.train_X和self.train_y被赋值为None,self.params被赋值为{"l": 2, "sigma_f": 1},self.optimize被赋值为传入的参数optimize。
在适应函数中,传入参数为X和y,用于对模型进行适应操作。
解释一下如下代码def anisotropic_Gaussian(ksize=15, theta=np.pi, l1=6, l2=6): """ generate an anisotropic Gaussian kernel Args: ksize : e.g., 15, kernel size theta : [0, pi], rotation angle range l1 : [0.1,50], scaling of eigenvalues l2 : [0.1,l1], scaling of eigenvalues If l1 = l2, will get an isotropic Gaussian kernel. Returns: k : kernel """ v = np.dot(np.array([[np.cos(theta), -np.sin(theta)], [np.sin(theta), np.cos(theta)]]), np.array([1., 0.])) V = np.array([[v[0], v[1]], [v[1], -v[0]]]) D = np.array([[l1, 0], [0, l2]]) Sigma = np.dot(np.dot(V, D), np.linalg.inv(V)) k = gm_blur_kernel(mean=[0, 0], cov=Sigma, size=ksize) return
这段代码是用于生成一个有方向性的高斯核函数。其中,ksize表示卷积核的大小,theta表示旋转角度,l1和l2分别是特征值的缩放比例,用于控制高斯分布的形状和方向。当l1=l2时,生成的高斯核函数是各向同性的。函数返回生成的卷积核。
阅读全文