class GP: def __init__(self, num_x_samples): self.observations = {"x": list(), "y": list()} self.num_x_samples = num_x_samples self.x_samples = np.arange(0, 10.0, 10.0 / self.num_x_samples).reshape(-1, 1) # prior self.mu = np.zeros_like(self.x_samples) self.cov = self.kernel(self.x_samples, self.x_samples) def update(self, observations): self.update_observation(observations) x = np.array(self.observations["x"]).reshape(-1, 1) y = np.array(self.observations["y"]).reshape(-1, 1) K11 = self.cov # (N,N) K22 = self.kernel(x, x) # (k,k) K12 = self.kernel(self.x_samples, x) # (N,k) K21 = self.kernel(x, self.x_samples) # (k,N) K22_inv = np.linalg.inv(K22 + 1e-8 * np.eye(len(x))) # (k,k) self.mu = K12.dot(K22_inv).dot(y) self.cov = self.kernel(self.x_samples, self.x_samples) - K12.dot(K22_inv).dot(K21) gp = GP(num_x_samples=100)解释一下gp = GP(num_x_samples=100)
时间: 2023-06-09 14:05:52 浏览: 128
这是一个名为GP的类,它有一个初始化函数__init__,需要传入num_x_samples参数。它有两个成员变量observations和num_x_samples,observations是一个字典,包含"x"和"y"两个键,分别对应一个空列表,用于存储观测数据。num_x_samples是输入自变量x采样点的数量。
x_samples是一个numpy数组,包含0到10之间等间隔的num_x_samples个数值,用于作为自变量x的取值。这个数组的形状是(num_x_samples, 1)。
相关问题
def _grow_tree(self, X, y, depth=0): num_samples_per_class = [np.sum(y == i) for i in range(self.n_classes_)] predicted_class = np.argmax(num_samples_per_class) node = Node(predicted_class=predicted_class) if depth < self.max_depth: idx, thr = self._best_split(X, y) if idx is not None: indices_left = X[:, idx] < thr X_left, y_left = X[indices_left], y[indices_left] X_right, y_right = X[~indices_left], y[~indices_left] node.feature_index = idx node.threshold = thr node.left = self._grow_tree(X_left, y_left, depth + 1) node.right = self._grow_tree(X_right, y_right, depth + 1) return node def _predict(self, inputs): node = self.tree_ while node.left: if inputs[node.feature_index] < node.threshold: node = node.left else: node = node.right return node.predicted_class class Node: def __init__(self, *, predicted_class): self.predicted_class = predicted_class self.feature_index = 0 self.threshold = 0 self.left = None self.right = None解释这段代码
这段代码实现了分类树的核心功能,其中包括两个方法和一个类:
1. `_grow_tree(self, X, y, depth=0)`:生成决策树的方法,其中 `X` 是输入数据的特征矩阵,`y` 是对应的类别标签,`depth` 是当前节点的深度。它首先统计每个类别在当前节点中的数量,然后计算出数量最多的类别作为当前节点的预测类别。如果当前节点深度还未达到最大深度,则调用 `_best_split` 方法找到最佳分裂点,然后根据分裂点将当前节点分裂成左右两个子节点,分别递归调用 `_grow_tree` 方法生成左右子树。最后,返回当前节点。
2. `_predict(self, inputs)`:根据输入数据进行分类的方法,其中 `inputs` 是用于分类的输入特征向量。它使用当前节点的特征索引和阈值判断输入数据应该进入左子树还是右子树,直到找到叶子节点为止,最终返回叶子节点的预测类别。
3. `Node` 类:表示分类树的一个节点,其中包含预测类别、特征索引、阈值、左子节点和右子节点等属性。
总体来说,这段代码实现了一个基本的分类树,可以用于对输入数据进行分类。但是,它还有一些需要改进的地方,比如可以考虑使用其他的分裂指标、处理缺失值等。
class CustomDataset(Dataset): def __init__(self, num_samples, input_dim, output_dim): self.num_samples = num_samples self.input_dim = input_dim self.output_dim = output_dim def __len__(self): return self.num_samples def __getitem__(self, idx): input_data = torch.randint(0, self.input_dim, (10,)) output_data = torch.randint(0, self.output_dim, (10,)) return input_data, output_data 中生成的input_data和output_data的type是多少
在这段代码中,`input_data` 和 `output_data` 的类型都是 `torch.Tensor`。
`torch.randint(0, self.input_dim, (10,))` 生成的 `input_data` 是一个大小为 (10,) 的一维张量,其中每个元素都是从闭区间 [0, self.input_dim) 中随机选取的整数。因此,`input_data` 的类型是 `torch.Tensor`。
同样地,`torch.randint(0, self.output_dim, (10,))` 生成的 `output_data` 也是一个大小为 (10,) 的一维张量,其中每个元素都是从闭区间 [0, self.output_dim) 中随机选取的整数。因此,`output_data` 的类型同样是 `torch.Tensor`。
因此,在 `__getitem__` 方法中返回的 `input_data` 和 `output_data` 的类型都是 `torch.Tensor`。
阅读全文