pytorch部分代码如下:train_loss, train_acc = train(model_ft, DEVICE, train_loader, optimizer, epoch,model_ema) for batch_idx, (data, target) in enumerate(train_loader): data, target = data.to(device, non_blocking=True), Variable(target).to(device,non_blocking=True) # 3、将数据输入mixup_fn生成mixup数据 samples, targets = mixup_fn(data, target) # 4、将上一步生成的数据输入model,输出预测结果,再计算loss output = model(samples) # 5、梯度清零(将loss关于weight的导数变成0) optimizer.zero_grad() # 6、若使用混合精度 if use_amp: with torch.cuda.amp.autocast(): # 开启混合精度 loss = torch.nan_to_num(criterion_train(output, targets)) # 计算loss scaler.scale(loss).backward() # 梯度放大 torch.nn.utils.clip_grad_norm_(model.parameters(), CLIP_GRAD) if not (self._backward_hooks or self._forward_hooks or self._forward_pre_hooks or _global_backward_hooks or global_forward_hooks or global_forward_pre_hooks): return forward_call(*input, **kwargs) class LDAMLoss(nn.Module): def init(self, cls_num_list, max_m=0.5, weight=None, s=30): super(LDAMLoss, self).init() m_list = 1.0 / np.sqrt(np.sqrt(cls_num_list)) m_list = m_list * (max_m / np.max(m_list)) m_list = torch.cuda.FloatTensor(m_list) self.m_list = m_list assert s > 0 self.s = s self.weight = weight def forward(self, x, target): index = torch.zeros_like(x, dtype=torch.uint8) target = torch.clamp(target, 0, index.size(1) - 1) index.scatter(1, target.data.view(-1, 1).type(torch.int64), 1) index = index[:, :x.size(1)] index_float = index.type(torch.cuda.FloatTensor) batch_m = torch.matmul(self.m_list[None, :], index_float.transpose(0,1)) batch_m = batch_m.view((-1, 1)) x_m = x - batch_m output = torch.where(index, x_m, x) return F.cross_entropy(self.s*output, target, weight=self.weight) 报错:RuntimeError: Expected index [112, 1] to be smaller than self [16, 7] apart from dimension 1 帮我看看如何修改源代码
时间: 2024-03-21 19:40:46 浏览: 72
Pytorch-基础入门代码
根据您提供的代码,出现报错的地方是:
```
index.scatter(1, target.data.view(-1, 1).type(torch.int64), 1)
```
报错的内容是:`Expected index [112, 1] to be smaller than self [16, 7] apart from dimension 1`,这说明了 `index` 和 `target` 的形状不匹配,导致了错误。
可以尝试以下修改:
1. 查看数据集的类别数是否匹配,即 `cls_num_list` 的长度是否等于类别数。如果不匹配,需要重新计算 `cls_num_list`。
2. 修改 `target` 的形状,使其与 `index` 的形状匹配。可以使用 `target.unsqueeze(1)` 将 `target` 的形状改为 `(batch_size, 1)`。修改后的代码如下:
```
index.scatter(1, target.unsqueeze(1).type(torch.int64), 1)
```
如果您的问题仍然没有解决,可以提供更多的信息,我会尽力帮助您解决问题。
阅读全文