Traceback (most recent call last): File "/home/bder73002/hpy/ConvNextV2_Demo/train+.py", line 280, in <module> train_loss, train_acc = train(model_ft, DEVICE, train_loader, optimizer, epoch,model_ema) File "/home/bder73002/hpy/ConvNextV2_Demo/train+.py", line 46, in train loss = torch.nan_to_num(criterion_train(output, targets)) # 计算loss File "/home/bder73002/anaconda3/envs/python3.9.2/lib/python3.9/site-packages/torch/nn/modules/module.py", line 889, in _call_impl result = self.forward(*input, **kwargs) File "/home/bder73002/hpy/ConvNextV2_Demo/models/utils.py", line 182, in forward ldam_loss = self.ldam_loss(x, target) File "/home/bder73002/anaconda3/envs/python3.9.2/lib/python3.9/site-packages/torch/nn/modules/module.py", line 889, in _call_impl result = self.forward(*input, **kwargs) File "/home/bder73002/hpy/ConvNextV2_Demo/models/utils.py", line 148, in forward index.scatter_(1, target.data.view(-1, 1), 1) IndexError: scatter_(): Expected dtype int64 for index.
时间: 2023-12-15 14:04:30 浏览: 138
这个错误提示是在使用 PyTorch 进行训练时出现的。出现这个错误的原因是在执行 index.scatter_() 操作时,index 的数据类型应该是 int64,但实际上它的数据类型不是 int64。
你可以检查一下代码,看一下 index 的数据类型是否正确,如果不正确,可以使用 index = index.long() 将其转换为 int64 数据类型。另外,还需要确保 target 的数据类型也是 int64。
希望这能解决你的问题!
相关问题
Traceback (most recent call last): File "/home/bder73002/hpy/ConvNextV2_Demo/train+.py", line 275, in <module> train_loss, train_acc = train(model_ft, DEVICE, train_loader, optimizer, epoch,model_ema) File "/home/bder73002/hpy/ConvNextV2_Demo/train+.py", line 48, in train loss = torch.nan_to_num(criterion_train(output, targets)) # 计算loss File "/home/bder73002/anaconda3/envs/python3.9.2/lib/python3.9/site-packages/torch/nn/modules/module.py", line 889, in _call_impl result = self.forward(*input, **kwargs) File "/home/bder73002/hpy/ConvNextV2_Demo/models/losses.py", line 56, in forward focal_loss = self.focal_loss(x, target) File "/home/bder73002/anaconda3/envs/python3.9.2/lib/python3.9/site-packages/torch/nn/modules/module.py", line 889, in _call_impl result = self.forward(*input, **kwargs) File "/home/bder73002/hpy/ConvNextV2_Demo/models/losses.py", line 21, in forward return focal_loss(F.cross_entropy(input, target, reduction='none', weight=self.weight), self.gamma) File "/home/bder73002/anaconda3/envs/python3.9.2/lib/python3.9/site-packages/torch/nn/functional.py", line 2693, in cross_entropy return nll_loss(log_softmax(input, 1), target, weight, None, ignore_index, None, reduction) File "/home/bder73002/anaconda3/envs/python3.9.2/lib/python3.9/site-packages/torch/nn/functional.py", line 2388, in nll_loss ret = torch._C._nn.nll_loss(input, target, weight, _Reduction.get_enum(reduction), ignore_index) RuntimeError: Expected object of scalar type Long but got scalar type Float for argument #2 'target' in call to _thnn_nll_loss_forward
这个错误的原因是你的标签数据类型不一致。cross_entropy函数要求输入的target必须是Long类型的张量,但是你传入的target是Float类型的标量。你需要将标签转换为Long类型的张量。可以使用以下代码将标签转换为Long类型:
```python
targets = targets.long()
```
将其添加到你的代码中即可。
Traceback (most recent call last): File "/home/adminis/hpy/ConvNextV2_Demo/train+.py", line 284, in <module> train_loss, train_acc = train(model_ft, DEVICE, train_loader, optimizer, epoch,model_ema) File "/home/adminis/hpy/ConvNextV2_Demo/train+.py", line 46, in train loss = criterion_train(output, targets) File "/home/adminis/anaconda3/envs/wln/lib/python3.9/site-packages/torch/nn/modules/module.py", line 1051, in _call_impl return forward_call(*input, **kwargs) File "/home/adminis/hpy/ConvNextV2_Demo/models/losses.py", line 48, in forward output = torch.where(index, x_m, x) RuntimeError: expected scalar type float but found c10::Half
这个错误通常是由于 PyTorch 中数据类型不匹配导致的。具体来说,因为 `x_m` 是半精度浮点数类型 `c10::Half`,而 `x` 可能是单精度浮点数类型 `float`。在这种情况下,使用 `torch.where(index, x_m, x)` 会导致数据类型不一致,从而抛出这个错误。
你可以尝试将 `x` 和 `x_m` 的数据类型都转换为同一种类型,如单精度浮点数类型 `float`,具体方式如下:
```python
x = x.float()
x_m = x_m.float()
output = torch.where(index, x_m, x)
```
这样就可以保证 `x` 和 `x_m` 的数据类型都是 `float`,与其他计算中使用的数据类型匹配,从而避免这个错误的发生。
阅读全文