帮我看看这段代码报错原因:Traceback (most recent call last): File "/home/bder73002/hpy/ConvNextV2_Demo/train+.py", line 272, in <module> train_loss, train_acc = train(model_ft, DEVICE, train_loader, optimizer, epoch,model_ema) File "/home/bder73002/hpy/ConvNextV2_Demo/train+.py", line 48, in train loss = torch.nan_to_num(criterion_train(output, targets)) # 计算loss File "/home/bder73002/anaconda3/envs/python3.9.2/lib/python3.9/site-packages/torch/nn/modules/module.py", line 889, in _call_impl result = self.forward(*input, **kwargs) File "/home/bder73002/hpy/ConvNextV2_Demo/models/losses.py", line 37, in forward index.scatter_(1, target.data.view(-1, 1), 1) IndexError: scatter_(): Expected dtype int64 for index. 部分代码如下:cls_num_list = np.zeros(classes) for _, label in train_loader.dataset: cls_num_list[label] += 1 criterion_train = LDAMLoss(cls_num_list=cls_num_list, max_m=0.5, s=30) class LDAMLoss(nn.Module): def __init__(self, cls_num_list, max_m=0.5, weight=None, s=30): super(LDAMLoss, self).__init__() m_list = 1.0 / np.sqrt(np.sqrt(cls_num_list)) m_list = m_list * (max_m / np.max(m_list)) m_list = torch.cuda.FloatTensor(m_list) self.m_list = m_list assert s > 0 self.s = s self.weight = weight def forward(self, x, target): index = torch.zeros_like(x, dtype=torch.uint8) index.scatter_(1, target.data.view(-1, 1), 1) index_float = index.type(torch.cuda.FloatTensor) batch_m = torch.matmul(self.m_list[None, :], index_float.transpose(0,1)) batch_m = batch_m.view((-1, 1)) x_m = x - batch_m output = torch.where(index, x_m, x) return F.cross_entropy(self.s*output, target, weight=self.weight)
时间: 2023-12-01 14:02:25 浏览: 193
根据报错信息,可以看出问题出在这一行代码上:`index.scatter_(1, target.data.view(-1, 1), 1)`,报错信息中指出 `scatter_()` 函数期望得到的是 int64 类型的索引,但是目前传入的 `target.data.view(-1, 1)` 返回的类型不是 int64。
可以尝试修改这一行代码,将 `target.data.view(-1, 1)` 的类型转换为 int64 类型,如下所示:
```
index.scatter_(1, target.data.view(-1, 1).type(torch.LongTensor), 1)
```
这里使用了 `torch.LongTensor` 将类型转换为 int64。
相关问题
Traceback (most recent call last): File "/home/bder73002/hpy/ConvNextV2_Demo/train+.py", line 280, in <module> train_loss, train_acc = train(model_ft, DEVICE, train_loader, optimizer, epoch,model_ema) File "/home/bder73002/hpy/ConvNextV2_Demo/train+.py", line 46, in train loss = torch.nan_to_num(criterion_train(output, targets)) # 计算loss File "/home/bder73002/anaconda3/envs/python3.9.2/lib/python3.9/site-packages/torch/nn/modules/module.py", line 889, in _call_impl result = self.forward(*input, **kwargs) File "/home/bder73002/hpy/ConvNextV2_Demo/models/utils.py", line 182, in forward ldam_loss = self.ldam_loss(x, target) File "/home/bder73002/anaconda3/envs/python3.9.2/lib/python3.9/site-packages/torch/nn/modules/module.py", line 889, in _call_impl result = self.forward(*input, **kwargs) File "/home/bder73002/hpy/ConvNextV2_Demo/models/utils.py", line 148, in forward index.scatter_(1, target.data.view(-1, 1), 1) IndexError: scatter_(): Expected dtype int64 for index.
这个错误提示是在使用 PyTorch 进行训练时出现的。出现这个错误的原因是在执行 index.scatter_() 操作时,index 的数据类型应该是 int64,但实际上它的数据类型不是 int64。
你可以检查一下代码,看一下 index 的数据类型是否正确,如果不正确,可以使用 index = index.long() 将其转换为 int64 数据类型。另外,还需要确保 target 的数据类型也是 int64。
希望这能解决你的问题!
按照你说的进行了调整,报错如下: Traceback (most recent call last): File "/temp/py/app-07240001.py", line 16, in display_yaml TypeError: Object of type 'Undefined' is not JSON serializable
这个错误通常是由于在模板中使用了未定义的变量引起的。请确保在传递给模板的上下文变量中包含了正确的数据。
在这种情况下,可能是因为`data`变量没有正确传递给了模板。你可以在调用`render_template`函数时,将解析后的YAML数据作为参数传递给模板。请使用以下代码进行更新:
```python
@app.route('/')
def display_yaml():
with open('your_file.yml', 'r') as file:
data = yaml.safe_load(file)
return render_template('index.html', data=data)
```
请确保将`your_file.yml`替换为实际的YAML文件路径。
然后,在`index.html`模板文件中,你可以使用Jinja2语法来展示YAML数据。下面是一个示例:
```html
<!DOCTYPE html>
<html>
<head>
<title>Display YAML</title>
</head>
<body>
<h1>YAML Data:</h1>
<pre>{{ data }}</pre>
</body>
</html>
```
请确保保存并重新运行你的应用,然后刷新浏览器查看结果。如果问题仍然存在,请提供完整的错误堆栈信息以供参考。
阅读全文