def check_accuracy(self, X, y, num_samples=None, batch_size=2): N = X.shape[0] if num_samples is not None and N > num_samples: mask = np.random.choice(N, num_samples) N = num_samples X = X[mask] y = y[mask] num_batches = N // batch_size if N % batch_size != 0: num_batches += 1 y_pred = [] for i in range(num_batches): start = i * batch_size end = (i + 1) * batch_size scores = self.model.loss(X[start:end]) y_pred.append(np.argmax(scores, axis=1)) y_pred = np.hstack(y_pred) acc = np.mean(y_pred == y) return acc
时间: 2024-02-14 16:11:12 浏览: 84
这段代码中的 `grads` 是神经网络模型中所有参数的梯度。在神经网络的训练过程中,需要通过反向传播算法计算每个参数对于损失函数的梯度,然后使用梯度下降等优化算法来更新参数值,从而最小化损失函数。在这段代码中,`grads` 是通过调用 `self.model.loss(X_batch, y_batch)` 计算得到的,其中包含了神经网络模型中所有参数的梯度信息。
相关问题
def check_accuracy(self, X, y, num_samples=None, batch_size=2): # Maybe subsample the data N = X.shape[0] if num_samples is not None and N > num_samples: # 随机选取num_samples张图片,返回选取图片索引 mask = np.random.choice(N, num_samples) N = num_samples X = X[mask] y = y[mask] num_batches = N // batch_size if N % batch_size != 0: num_batches += 1 y_pred = [] for i in range(num_batches): start = i * batch_size end = (i + 1) * batch_size scores = self.model.loss(X[start:end]) y_pred.append(np.argmax(scores, axis=1)) y_pred = np.hstack(y_pred) acc = np.mean(y_pred == y) return acc
这段代码是用于检查模型准确率的,其中参数X代表输入数据,y代表对应的标签数据。如果num_samples不为None,则从输入数据中随机选取num_samples张图片进行检查。batch_size是指每个batch的大小。函数中首先计算需要划分的batch数,然后对每个batch计算模型的输出并将预测结果存储在y_pred列表中。最后将所有的预测结果连接起来,计算准确率并返回。
import numpy as np from sklearn.datasets import load_iris from sklearn.model_selection import train_test_split import matplotlib.pyplot as plt # 加载 iris 数据 iris = load_iris() # 只选取两个特征和两个类别进行二分类 X = iris.data[(iris.target==0)|(iris.target==1), :2] y = iris.target[(iris.target==0)|(iris.target==1)] # 将标签转化为 0 和 1 y[y==0] = -1 # 将数据集分为训练集和测试集 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) # 实现逻辑回归算法 class LogisticRegression: def __init__(self, lr=0.01, num_iter=100000, fit_intercept=True, verbose=False): self.lr = lr self.num_iter = num_iter self.fit_intercept = fit_intercept self.verbose = verbose def __add_intercept(self, X): intercept = np.ones((X.shape[0], 1)) return np.concatenate((intercept, X), axis=1) def __sigmoid(self, z): return 1 / (1 + np.exp(-z)) def __loss(self, h, y): return (-y * np.log(h) - (1 - y) * np.log(1 - h)).mean() def fit(self, X, y): if self.fit_intercept: X = self.__add_intercept(X) # 初始化参数 self.theta = np.zeros(X.shape[1]) for i in range(self.num_iter): # 计算梯度 z = np.dot(X, self.theta) h = self.__sigmoid(z) gradient = np.dot(X.T, (h - y)) / y.size # 更新参数 self.theta -= self.lr * gradient # 打印损失函数 if self.verbose and i % 10000 == 0: z = np.dot(X, self.theta) h = self.__sigmoid(z) loss = self.__loss(h, y) print(f"Loss: {loss} \t") def predict_prob(self, X): if self.fit_intercept: X = self.__add_intercept(X) return self.__sigmoid(np.dot(X, self.theta)) def predict(self, X, threshold=0.5): return self.predict_prob(X) >= threshold # 训练模型 model = LogisticRegressio
n()
model.fit(X_train, y_train)
# 在测试集上进行预测
y_pred = model.predict(X_test)
# 计算准确率
accuracy = np.sum(y_pred == y_test) / y_test.shape[0]
print(f"Accuracy: {accuracy}")
# 可视化
plt.scatter(X_test[:, 0], X_test[:, 1], c=y_pred)
plt.show()
请问这段代码实现了什么功能?
阅读全文