class RNN: def init(self, input_size, hidden_size, output_size): self.input_size = input_size self.hidden_size = hidden_size self.output_size = output_size # 初始化参数 self.Wxh = np.random.randn(hidden_size, input_size) * 0.01 # 输入层到隐藏层的权重矩阵 self.Whh = np.random.randn(hidden_size, hidden_size) * 0.01 # 隐藏层到隐藏层的权重矩阵 self.Why = np.random.randn(output_size, hidden_size) * 0.01 # 隐藏层到输出层的权重矩阵 self.bh = np.zeros((hidden_size, 1)) # 隐藏层偏置 self.by = np.zeros((output_size, 1)) # 输出层偏置 # 初始化隐藏状态 self.h = np.zeros((hidden_size, 1)) def forward(self, x): # 更新隐藏状态 self.h = np.tanh(np.dot(self.Wxh, x) + np.dot(self.Whh, self.h) + self.bh) # 计算输出 y = np.dot(self.Why, self.h) + self.by # 返回输出和隐藏状态 return y, self.h def backward(self, x, y, target, learning_rate): # 计算输出误差 dy = y - target # 计算隐藏状态误差 dh = np.dot(self.Why.T, dy) * (1 - self.h ** 2) # 计算权重和偏置的梯度 dWhy = np.dot(dy, self.h.T) dby = np.sum(dy, axis=1, keepdims=True) dWxh = np.dot(dh, x.T) dWhh = np.dot(dh, self.h.T) dbh = np.sum(dh, axis=1, keepdims=True) # 更新权重和偏置 self.Why -= learning_rate * dWhy self.by -= learning_rate * dby self.Wxh -= learning_rate * dWxh self.Whh -= learning_rate * dWhh self.bh -= learning_rate * dbh 帮写一下用online_shopping_10_cats数据集训练以上模型的代码和步骤

时间: 2024-02-25 08:54:16 浏览: 28
好的,以下是使用online_shopping_10_cats数据集训练以上模型的代码和步骤: 1. 数据预处理 首先,需要对数据集进行预处理,将每个商品评论转换为数字序列,并将其填充到相同的长度,以便于输入到模型中。可以使用Python中的keras.preprocessing.text.Tokenizer()类来实现这一步骤。代码如下: ``` from keras.preprocessing.text import Tokenizer from keras.preprocessing.sequence import pad_sequences # 读取数据集文件 with open('reviews.txt', 'r', encoding='utf8') as f: reviews = f.readlines() # 将每个评论转换为数字序列 tokenizer = Tokenizer() tokenizer.fit_on_texts(reviews) sequences = tokenizer.texts_to_sequences(reviews) # 将序列填充到相同的长度 max_len = 100 # 设定最大长度为100 sequences = pad_sequences(sequences, maxlen=max_len, padding='post') ``` 2. 划分训练集和测试集 将数据集划分为训练集和测试集,以便于在训练过程中进行模型评估。可以使用sklearn.model_selection中的train_test_split()函数来实现这一步骤。代码如下: ``` from sklearn.model_selection import train_test_split # 读取标签文件 with open('labels.txt', 'r', encoding='utf8') as f: labels = f.readlines() # 划分训练集和测试集 x_train, x_test, y_train, y_test = train_test_split(sequences, labels, test_size=0.2, random_state=42) ``` 3. 构建和训练模型 使用以上给出的RNN模型,构建并训练模型。需要注意的是,模型的输出需要经过softmax激活函数,以保证输出结果是概率分布。代码如下: ``` import numpy as np # 定义模型参数 input_size = len(tokenizer.word_index) + 1 hidden_size = 100 output_size = 10 learning_rate = 0.01 epochs = 10 batch_size = 128 # 初始化模型 model = RNN(input_size, hidden_size, output_size) # 训练模型 for epoch in range(epochs): print('Epoch', epoch+1) for i in range(0, len(x_train), batch_size): x_batch = x_train[i:i+batch_size] y_batch = y_train[i:i+batch_size] # 将标签转换为one-hot编码 y_batch = np.eye(output_size)[y_batch] # 前向传播 y_pred, h = model.forward(x_batch.T) # 计算损失函数 loss = -np.sum(y_batch*np.log(y_pred)) / len(x_batch) # 反向传播 model.backward(x_batch.T, y_pred, y_batch, learning_rate) # 在测试集上进行模型评估 y_test_pred, _ = model.forward(x_test.T) y_test_pred = np.argmax(y_test_pred, axis=0) accuracy = np.mean(np.equal(y_test_pred, y_test)) print('Test accuracy:', accuracy) ``` 4. 模型评估 在训练过程中,可以在每个epoch结束后,在测试集上进行模型评估,以评估模型的性能。代码如下: ``` # 在测试集上进行模型评估 y_test_pred, _ = model.forward(x_test.T) y_test_pred = np.argmax(y_test_pred, axis=0) accuracy = np.mean(np.equal(y_test_pred, y_test)) print('Test accuracy:', accuracy) ``` 以上就是使用online_shopping_10_cats数据集训练以上模型的完整代码和步骤。

相关推荐

import torch import torch.nn as nn import torch.optim as optim import numpy as np 定义基本循环神经网络模型 class RNNModel(nn.Module): def init(self, rnn_type, input_size, hidden_size, output_size, num_layers=1): super(RNNModel, self).init() self.rnn_type = rnn_type self.input_size = input_size self.hidden_size = hidden_size self.output_size = output_size self.num_layers = num_layers self.encoder = nn.Embedding(input_size, hidden_size) if rnn_type == 'RNN': self.rnn = nn.RNN(hidden_size, hidden_size, num_layers) elif rnn_type == 'GRU': self.rnn = nn.GRU(hidden_size, hidden_size, num_layers) self.decoder = nn.Linear(hidden_size, output_size) def forward(self, input, hidden): input = self.encoder(input) output, hidden = self.rnn(input, hidden) output = output.view(-1, self.hidden_size) output = self.decoder(output) return output, hidden def init_hidden(self, batch_size): if self.rnn_type == 'RNN': return torch.zeros(self.num_layers, batch_size, self.hidden_size) elif self.rnn_type == 'GRU': return torch.zeros(self.num_layers, batch_size, self.hidden_size) 定义数据集 with open('汉语音节表.txt', encoding='utf-8') as f: chars = f.readline() chars = list(chars) idx_to_char = list(set(chars)) char_to_idx = dict([(char, i) for i, char in enumerate(idx_to_char)]) corpus_indices = [char_to_idx[char] for char in chars] 定义超参数 input_size = len(idx_to_char) hidden_size = 256 output_size = len(idx_to_char) num_layers = 1 batch_size = 32 num_steps = 5 learning_rate = 0.01 num_epochs = 100 定义模型、损失函数和优化器 model = RNNModel('RNN', input_size, hidden_size, output_size, num_layers) criterion = nn.CrossEntropyLoss() optimizer = optim.Adam(model.parameters(), lr=learning_rate) 训练模型 for epoch in range(num_epochs): model.train() hidden = model.init_hidden(batch_size) loss = 0 for X, Y in data_iter_consecutive(corpus_indices, batch_size, num_steps): optimizer.zero_grad() hidden = hidden.detach() output, hidden = model(X, hidden) loss = criterion(output, Y.view(-1)) loss.backward() torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=1.0) optimizer.step() if epoch % 10 == 0: print(f"Epoch {epoch}, Loss: {loss.item()}")请正确缩进代码

import numpy import numpy as np import matplotlib.pyplot as plt import math import torch from torch import nn from torch.utils.data import DataLoader, Dataset import os os.environ['KMP_DUPLICATE_LIB_OK']='True' dataset = [] for data in np.arange(0, 3, .01): data = math.sin(data * math.pi) dataset.append(data) dataset = np.array(dataset) dataset = dataset.astype('float32') max_value = np.max(dataset) min_value = np.min(dataset) scalar = max_value - min_value print(scalar) dataset = list(map(lambda x: x / scalar, dataset)) def create_dataset(dataset, look_back=3): dataX, dataY = [], [] for i in range(len(dataset) - look_back): a = dataset[i:(i + look_back)] dataX.append(a) dataY.append(dataset[i + look_back]) return np.array(dataX), np.array(dataY) data_X, data_Y = create_dataset(dataset) train_X, train_Y = data_X[:int(0.8 * len(data_X))], data_Y[:int(0.8 * len(data_Y))] test_X, test_Y = data_Y[int(0.8 * len(data_X)):], data_Y[int(0.8 * len(data_Y)):] train_X = train_X.reshape(-1, 1, 3).astype('float32') train_Y = train_Y.reshape(-1, 1, 3).astype('float32') test_X = test_X.reshape(-1, 1, 3).astype('float32') train_X = torch.from_numpy(train_X) train_Y = torch.from_numpy(train_Y) test_X = torch.from_numpy(test_X) class RNN(nn.Module): def __init__(self, input_size, hidden_size, output_size=1, num_layer=2): super(RNN, self).__init__() self.input_size = input_size self.hidden_size = hidden_size self.output_size = output_size self.num_layer = num_layer self.rnn = nn.RNN(input_size, hidden_size, batch_first=True) self.linear = nn.Linear(hidden_size, output_size) def forward(self, x): out, h = self.rnn(x) out = self.linear(out[0]) return out net = RNN(3, 20) criterion = nn.MSELoss(reduction='mean') optimizer = torch.optim.Adam(net.parameters(), lr=1e-2) train_loss = [] test_loss = [] for e in range(1000): pred = net(train_X) loss = criterion(pred, train_Y) optimizer.zero_grad() # 反向传播 loss.backward() optimizer.step() if (e + 1) % 100 == 0: print('Epoch:{},loss:{:.10f}'.format(e + 1, loss.data.item())) train_loss.append(loss.item()) plt.plot(train_loss, label='train_loss') plt.legend() plt.show()请适当修改代码,并写出预测值和真实值的代码

import torch import torch.nn as nn from torchtext.datasets import AG_NEWS from torchtext.data.utils import get_tokenizer from torchtext.vocab import build_vocab_from_iterator # 数据预处理 tokenizer = get_tokenizer('basic_english') train_iter = AG_NEWS(split='train') counter = Counter() for (label, line) in train_iter: counter.update(tokenizer(line)) vocab = build_vocab_from_iterator([counter], specials=["<unk>"]) word2idx = dict(vocab.stoi) # 设定超参数 embedding_dim = 64 hidden_dim = 128 num_epochs = 10 batch_size = 64 # 定义模型 class RNN(nn.Module): def __init__(self, vocab_size, embedding_dim, hidden_dim): super(RNN, self).__init__() self.embedding = nn.Embedding(vocab_size, embedding_dim) self.rnn = nn.RNN(embedding_dim, hidden_dim, batch_first=True) self.fc = nn.Linear(hidden_dim, 4) def forward(self, x): x = self.embedding(x) out, _ = self.rnn(x) out = self.fc(out[:, -1, :]) return out # 初始化模型、优化器和损失函数 model = RNN(len(vocab), embedding_dim, hidden_dim) optimizer = torch.optim.Adam(model.parameters()) criterion = nn.CrossEntropyLoss() # 定义数据加载器 train_iter = AG_NEWS(split='train') train_data = [] for (label, line) in train_iter: label = torch.tensor([int(label)-1]) line = torch.tensor([word2idx[word] for word in tokenizer(line)]) train_data.append((line, label)) train_loader = torch.utils.data.DataLoader(train_data, batch_size=batch_size, shuffle=True) # 开始训练 for epoch in range(num_epochs): total_loss = 0.0 for input, target in train_loader: model.zero_grad() output = model(input) loss = criterion(output, target.squeeze()) loss.backward() optimizer.step() total_loss += loss.item() * input.size(0) print("Epoch: {}, Loss: {:.4f}".format(epoch+1, total_loss/len(train_data)))改错

import numpy as np import matplotlib.pyplot as plt import math import torch from torch import nn import pdb from torch.autograd import Variable import os os.environ['KMP_DUPLICATE_LIB_OK']='True' dataset = [] for data in np.arange(0, 3, .01): data = math.sin(data * math.pi) dataset.append(data) dataset = np.array(dataset) dataset = dataset.astype('float32') max_value = np.max(dataset) min_value = np.min(dataset) scalar = max_value - min_value dataset = list(map(lambda x: x / scalar, dataset)) def create_dataset(dataset, look_back=3): dataX, dataY = [], [] for i in range(len(dataset) - look_back): a = dataset[i:(i + look_back)] dataX.append(a) dataY.append(dataset[i + look_back]) return np.array(dataX), np.array(dataY) data_X, data_Y = create_dataset(dataset) # 对训练集测试集划分,划分比例0.8 train_X, train_Y = data_X[:int(0.8 * len(data_X))], data_Y[:int(0.8 * len(data_Y))] test_X, test_Y = data_Y[int(0.8 * len(data_X)):], data_Y[int(0.8 * len(data_Y)):] train_X = train_X.reshape(-1, 1, 3).astype('float32') train_Y = train_Y.reshape(-1, 1, 3).astype('float32') test_X = test_X.reshape(-1, 1, 3).astype('float32') class RNN(nn.Module): def __init__(self, input_size, hidden_size, output_size=1, num_layer=2): super(RNN, self).__init__() self.input_size = input_size self.hidden_size = hidden_size self.output_size = output_size self.num_layer = num_layer self.rnn = nn.RNN(input_size, hidden_size, batch_first=True) self.linear = nn.Linear(hidden_size, output_size) def forward(self, x): # 补充forward函数 out, h = self.rnn(x) out = self.linear(out[0]) # print("output的形状", out.shape) return out net = RNN(3, 20) criterion = nn.MSELoss(reduction='mean') optimizer = torch.optim.Adam(net.parameters(), lr=1e-2) train_loss = [] test_loss = [] for e in range(1000): pred = net(train_X) loss = criterion(pred, train_Y) optimizer.zero_grad() # 反向传播 loss.backward() optimizer.step() if (e + 1) % 100 == 0: print('Epoch:{},loss:{:.10f}'.format(e + 1, loss.data.item())) train_loss.append(loss.item()) plt.plot(train_loss, label='train_loss') plt.legend() plt.show()画出预测值真实值图

最新推荐

recommend-type

基于随机森林的数据分类预测Matlab程序RF 多特征输入多类别输出

基于随机森林的数据分类预测Matlab程序RF 多特征输入多类别输出 基于随机森林的数据分类预测Matlab程序RF 多特征输入多类别输出 基于随机森林的数据分类预测Matlab程序RF 多特征输入多类别输出 基于随机森林的数据分类预测Matlab程序RF 多特征输入多类别输出 基于随机森林的数据分类预测Matlab程序RF 多特征输入多类别输出 基于随机森林的数据分类预测Matlab程序RF 多特征输入多类别输出 基于随机森林的数据分类预测Matlab程序RF 多特征输入多类别输出 基于随机森林的数据分类预测Matlab程序RF 多特征输入多类别输出 基于随机森林的数据分类预测Matlab程序RF 多特征输入多类别输出
recommend-type

Go微服务教程项目使用领域驱动设计和洋葱架构.zip

Go微服务教程项目使用领域驱动设计和洋葱架构
recommend-type

520表白的表白的代码

520了表白成功我只能说520快乐了520快乐520祝您表白成功
recommend-type

vgg模型-通过CNN训练识别基于深度学习的车载摄像头图像中的交通事件分类-不含数据集图片-含逐行注释和说明文档.zip

vgg模型_通过CNN训练识别基于深度学习的车载摄像头图像中的交通事件分类-不含数据集图片-含逐行注释和说明文档 本代码是基于python pytorch环境安装的。 下载本代码后,有个环境安装的requirement.txt文本 如果有环境安装不会的,可自行网上搜索如何安装python和pytorch,这些环境安装都是有很多教程的,简单的 环境需要自行安装,推荐安装anaconda然后再里面推荐安装python3.7或3.8的版本,pytorch推荐安装1.7.1或1.8.1版本 首先是代码的整体介绍 总共是3个py文件,十分的简便 且代码里面的每一行都是含有中文注释的,小白也能看懂代码 然后是关于数据集的介绍。 本代码是不含数据集图片的,下载本代码后需要自行搜集图片放到对应的文件夹下即可 在数据集文件夹下是我们的各个类别,这个类别不是固定的,可自行创建文件夹增加分类数据集 需要我们往每个文件夹下搜集来图片放到对应文件夹下,每个对应的文件夹里面也有一张提示图,提示图片放的位置 然后我们需要将搜集来的图片,直接放到对应的文件夹下,就可以对代码进行训练了。 运行01
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

深入了解MATLAB开根号的最新研究和应用:获取开根号领域的最新动态

![matlab开根号](https://www.mathworks.com/discovery/image-segmentation/_jcr_content/mainParsys3/discoverysubsection_1185333930/mainParsys3/image_copy.adapt.full.medium.jpg/1712813808277.jpg) # 1. MATLAB开根号的理论基础 开根号运算在数学和科学计算中无处不在。在MATLAB中,开根号可以通过多种函数实现,包括`sqrt()`和`nthroot()`。`sqrt()`函数用于计算正实数的平方根,而`nt
recommend-type

react的函数组件的使用

React 的函数组件是一种简单的组件类型,用于定义无状态或者只读组件。 它们通常接受一个 props 对象作为参数并返回一个 React 元素。 函数组件的优点是代码简洁、易于测试和重用,并且它们使 React 应用程序的性能更加出色。 您可以使用函数组件来呈现简单的 UI 组件,例如按钮、菜单、标签或其他部件。 您还可以将它们与 React 中的其他组件类型(如类组件或 Hooks)结合使用,以实现更复杂的 UI 交互和功能。
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依