class Discriminator(Model): def __init__(self, hidden_dim, net_type='GRU'): self.hidden_dim = hidden_dim self.net_type=net_type def build(self, input_shape): model = Sequential(name='Discriminator') model = net(model, n_layers=3, hidden_units=self.hidden_dim, output_units=1, net_type=self.net_type) return model
时间: 2024-02-14 13:26:50 浏览: 67
这段代码定义了一个名为Discriminator的类,继承自Keras的Model类。Discriminator类用于构建一个判别器模型,该模型用于二分类任务。
Discriminator类具有以下方法和属性:
- __init__方法:初始化方法,接受hidden_dim和net_type两个参数。hidden_dim指定隐藏单元的数量,net_type指定RNN类型,默认为'GRU'。
- build方法:构建方法,接受input_shape作为参数。在该方法中,创建一个名为model的Sequential模型对象,并通过调用net函数构建多层GRU或LSTM模型。n_layers参数设置为3,hidden_units设置为self.hidden_dim,output_units设置为1(因为判别器的输出是二分类问题),net_type设置为self.net_type。最后返回构建好的模型对象。
通过创建Discriminator类的实例,你可以使用build方法来构建一个判别器模型,该模型包含多层GRU或LSTM,并且隐藏单元的数量由hidden_dim指定。net_type参数可选,默认为'GRU'。你可以根据需要进行调整。判别器模型可以用于执行二分类任务,例如判断输入数据是否属于某个类别。
阅读全文