将下面这段代码进行修改调制融入我的代码中:best_accuracy = 0.0 best_params = {} # Iterate over different parameter combinations for n_estimators in [10, 30, 50]: for max_depth in [2, 4, 6]: for max_features in ['sqrt', 'log2']: for min_samples_split in [2, 4, 6]: # Train a RandomForestClassifier with the current parameter combination rf = RandomForestClassifier(n_estimators=n_estimators, max_depth=max_depth, max_features=max_features, min_samples_split=min_samples_split) rf.fit(X_train, Y_train) # Predict using the trained model Y_pred = rf.predict(X_test) # Compute accuracy current_accuracy = accuracy_score(Y_test, Y_pred, normalize=True) # Check if the current accuracy is higher than the best accuracy so far if current_accuracy > best_accuracy: best_accuracy = current_accuracy best_params = { 'n_estimators': n_estimators, 'max_depth': max_depth, 'max_features': max_features, 'min_samples_split': min_samples_split } print("Best Accuracy:", best_accuracy) print("Best Parameters:", best_params)
时间: 2024-02-10 16:11:10 浏览: 174
classifier_D.rar_AUC_svm accuracy_分类评价指标_灵敏度代码_预测模型
5星 · 资源好评率100%
好的,这段代码的作用是通过交叉验证的方式寻找随机森林分类器的最佳超参数组合,并输出最佳的超参数组合和对应的准确率。
你可以将这段代码嵌入到你的机器学习模型训练过程中,根据你的实际情况修改其中的变量名和参数组合,例如:
```python
best_accuracy = 0.0
best_params = {}
for num_epochs in [10, 20, 30]:
for learning_rate in [0.01, 0.05, 0.1]:
for batch_size in [32, 64, 128]:
# Train a neural network with the current parameter combination
model = MyNeuralNetwork(num_epochs=num_epochs, learning_rate=learning_rate, batch_size=batch_size)
model.fit(X_train, Y_train)
# Predict using the trained model
Y_pred = model.predict(X_test)
# Compute accuracy
current_accuracy = accuracy_score(Y_test, Y_pred, normalize=True)
# Check if the current accuracy is higher than the best accuracy so far
if current_accuracy > best_accuracy:
best_accuracy = current_accuracy
best_params = {
'num_epochs': num_epochs,
'learning_rate': learning_rate,
'batch_size': batch_size
}
print("Best Accuracy:", best_accuracy)
print("Best Parameters:", best_params)
```
在这个例子中,我们使用了三个参数:num_epochs(训练轮数)、learning_rate(学习率)和batch_size(批量大小),并通过交叉验证的方式寻找最佳超参数组合。你可以根据你的实际情况,修改这些参数和参数值,以及替换掉MyNeuralNetwork为你自己的模型类名。
阅读全文