优化代码# GBDT 模型的网格搜索法 # 选择不同的参数 from sklearn.model_selection import GridSearchCV learning_rate_options = [0.01, 0.05, 0.1] max_depth_options = [3,5,7,9] n_estimators_options = [100, 300, 500] parameters = {'learning_rate':learning_rate_options, 'max_depth':max_depth_options, 'n_estimators':n_estimators_options} grid_gbdt = GridSearchCV(estimator= GradientBoostingClassifier(),param_grid=parameters,cv=10,scoring='accuracy') grid_gbdt.fit(X_train, y_train) # 结果输出 grid_gbdt.grid_scores_,grid_gbdt.best_params_, grid_gbdt.best_score_,一直运行无法显示结果

时间: 2024-03-01 13:56:13 浏览: 21
您可以尝试将最后一行的输出改为以下内容: ``` print(grid_gbdt.cv_results_) print(grid_gbdt.best_params_) print(grid_gbdt.best_score_) ``` 这样就可以输出网格搜索的结果、最佳参数和最佳得分了。如果仍然无法显示结果,可能是因为您的数据集太大或参数组合太多,导致模型训练时间过长。您可以尝试减少参数组合或使用更小的数据集进行实验。
相关问题

优化代码 增加参数搜索的步长或者减少搜索范围 # GBDT 模型的网格搜索法 # 选择不同的参数 from sklearn.model_selection import GridSearchCV learning_rate_options = [0.01, 0.05, 0.1] max_depth_options = [3,5,7,9] n_estimators_options = [100, 300, 500] parameters = {'learning_rate':learning_rate_options, 'max_depth':max_depth_options, 'n_estimators':n_estimators_options} grid_gbdt = GridSearchCV(estimator= GradientBoostingClassifier(),param_grid=parameters,cv=10,scoring='accuracy') grid_gbdt.fit(X_train, y_train) # 结果输出 grid_gbdt.best_score_

可以尝试增加参数搜索的步长,比如将learning_rate_options改为[0.01, 0.05, 0.1, 0.2],或者将max_depth_options改为[3, 6, 9]。也可以减少搜索范围,比如将n_estimators_options改为[100, 200, 300]。这样可以在保证搜索精度的前提下,减少搜索时间。 修改后的代码示例: ``` from sklearn.model_selection import GridSearchCV learning_rate_options = [0.01, 0.05, 0.1, 0.2] max_depth_options = [3, 6, 9] n_estimators_options = [100, 200, 300] parameters = {'learning_rate':learning_rate_options, 'max_depth':max_depth_options, 'n_estimators':n_estimators_options} grid_gbdt = GridSearchCV(estimator= GradientBoostingClassifier(), param_grid=parameters, cv=10, scoring='accuracy') grid_gbdt.fit(X_train, y_train) # 结果输出 print("最优参数:", grid_gbdt.best_params_) print("最优模型:", grid_gbdt.best_estimator_) print("最优得分:", grid_gbdt.best_score_) ```

from sklearn.ensemble import GradientBoostingClassifier from sklearn.datasets import load_iris from sklearn.model_selection import train_test_split, GridSearchCV from sklearn.metrics import accuracy_score from sklearn.tree import export_graphviz import graphviz from IPython.display import display # 加载iris数据集 iris = load_iris() X = iris.data y = iris.target什么意思

这段代码是使用 Python 的 scikit-learn 库对鸢尾花数据集进行分类任务的示例。 首先,代码中从 `sklearn.ensemble` 中导入了 `GradientBoostingClassifier` 类,它是一种基于决策树的集成学习算法,用于构建梯度提升决策树模型;从 `sklearn.datasets` 中导入了 `load_iris` 函数,用于加载鸢尾花数据集;从 `sklearn.model_selection` 中导入了 `train_test_split` 和 `GridSearchCV` 函数,用于划分训练集和测试集,并进行网格搜索优化模型参数;从 `sklearn.metrics` 中导入了 `accuracy_score` 函数,用于计算分类准确率;从 `sklearn.tree` 中导入了 `export_graphviz` 函数,用于将决策树导出为 Graphviz 格式;从 `graphviz` 中导入了 `graphviz` 函数,用于在 Jupyter Notebook 中显示决策树图;最后从 `IPython.display` 中导入了 `display` 函数,用于显示决策树图。 接下来,代码中加载了鸢尾花数据集,并将特征矩阵赋值给 `X`,将目标变量赋值给 `y`。 接下来,可以对数据进行训练集和测试集的划分,例如: ```python X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) ``` 然后,可以创建一个 `GradientBoostingClassifier` 的实例,并进行模型训练与预测,例如: ```python gbdt = GradientBoostingClassifier() gbdt.fit(X_train, y_train) y_pred = gbdt.predict(X_test) ``` 接着,可以使用 `GridSearchCV` 函数对模型进行网格搜索优化参数,例如: ```python param_grid = { 'n_estimators': [50, 100, 200], 'learning_rate': [0.1, 0.05, 0.01], 'max_depth': [3, 5, 7] } grid_search = GridSearchCV(estimator=gbdt, param_grid=param_grid, cv=5) grid_search.fit(X_train, y_train) best_estimator = grid_search.best_estimator_ ``` 最后,可以计算模型的分类准确率,并将决策树导出为 Graphviz 格式并显示在 Jupyter Notebook 中,例如: ```python accuracy = accuracy_score(y_test, y_pred) print('Accuracy:', accuracy) dot_data = export_graphviz(best_estimator.estimators_[0, 0], out_file=None, feature_names=iris.feature_names, class_names=iris.target_names, filled=True, rounded=True, special_characters=True) graph = graphviz.Source(dot_data) display(graph) ``` 以上代码中,`best_estimator.estimators_[0, 0]` 表示取训练好的第一个决策树模型。`export_graphviz` 函数可以将决策树导出为 Graphviz 格式的字符串。`graphviz.Source` 函数可以将 Graphviz 格式的字符串转换为 Jupyter Notebook 可以显示的图形。

相关推荐

# 导入模块 import prettytable as pt from sklearn.metrics import accuracy_score from sklearn.metrics import precision_score from sklearn.metrics import recall_score, f1_score from sklearn.metrics import roc_curve, auc # 创建表格对象 table = pt.PrettyTable() # 设置表格的列名 table.field_names = ["acc", "precision", "recall", "f1", "roc_auc"] # 循环添加数据 # 20个随机状态 for i in range(1): # # GBDT GBDT = GradientBoostingClassifier(learning_rate=0.1, min_samples_leaf=14, min_samples_split=6, max_depth=10, random_state=i, n_estimators=267 ) # GBDT = GradientBoostingClassifier(learning_rate=0.1, n_estimators=142,min_samples_leaf=80,min_samples_split=296,max_depth=7 , max_features='sqrt', random_state=66 # ) GBDT.fit(train_x, train_y) y_pred = GBDT.predict(test_x) # y_predprob = GBDT.predict_proba(test_x) print(y_pred) print('AUC Score:%.4g' % metrics.roc_auc_score(test_y.values, y_pred)) # print('AUC Score (test): %f' %metrics.roc_auc_score(test_y.values,y_predprob[:,1])) accuracy = GBDT.score(val_x, val_y) accuracy1 = GBDT.score(test_x, test_y) print("GBDT最终精确度:{},{}".format(accuracy, accuracy1)) y_predict3 = GBDT.predict(test_x) get_score(test_y, y_predict3, model_name='GBDT') acc = accuracy_score(test_y, y_predict3) # 准确率 prec = precision_score(test_y, y_predict3) # 精确率 recall = recall_score(test_y, y_predict3) # 召回率 f1 = f1_score(test_y, y_predict3) # F1 fpr, tpr, thersholds = roc_curve(test_y, y_predict3) roc_auc = auc(fpr, tpr) data1 = acc data2 = prec data3 = recall data4 = f1 data5 = roc_auc # 将数据添加到表格中 table.add_row([data1, data2, data3, data4, data5]) print(table) import pandas as pd # 将数据转换为DataFrame格式 df = pd.DataFrame(list(table), columns=["acc","prec","recall","f1","roc_auc"]) # 将DataFrame写入Excel文件 writer = pd.ExcelWriter('output.xlsx') df.to_excel(writer, index=False) writer.save(),出现上面的错误怎样更正

最新推荐

recommend-type

决策树模型组合算法GBDT.docx

决策树模型组合算法GBDT,这个文档非常浅显易懂,非常难得一见的好文档。
recommend-type

node-v0.10.13-sunos-x86.tar.gz

Node.js,简称Node,是一个开源且跨平台的JavaScript运行时环境,它允许在浏览器外运行JavaScript代码。Node.js于2009年由Ryan Dahl创立,旨在创建高性能的Web服务器和网络应用程序。它基于Google Chrome的V8 JavaScript引擎,可以在Windows、Linux、Unix、Mac OS X等操作系统上运行。 Node.js的特点之一是事件驱动和非阻塞I/O模型,这使得它非常适合处理大量并发连接,从而在构建实时应用程序如在线游戏、聊天应用以及实时通讯服务时表现卓越。此外,Node.js使用了模块化的架构,通过npm(Node package manager,Node包管理器),社区成员可以共享和复用代码,极大地促进了Node.js生态系统的发展和扩张。 Node.js不仅用于服务器端开发。随着技术的发展,它也被用于构建工具链、开发桌面应用程序、物联网设备等。Node.js能够处理文件系统、操作数据库、处理网络请求等,因此,开发者可以用JavaScript编写全栈应用程序,这一点大大提高了开发效率和便捷性。 在实践中,许多大型企业和组织已经采用Node.js作为其Web应用程序的开发平台,如Netflix、PayPal和Walmart等。它们利用Node.js提高了应用性能,简化了开发流程,并且能更快地响应市场需求。
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

SPDK_NVMF_DISCOVERY_NQN是什么 有什么作用

SPDK_NVMF_DISCOVERY_NQN 是 SPDK (Storage Performance Development Kit) 中用于查询 NVMf (Non-Volatile Memory express over Fabrics) 存储设备名称的协议。NVMf 是一种基于网络的存储协议,可用于连接远程非易失性内存存储器。 SPDK_NVMF_DISCOVERY_NQN 的作用是让存储应用程序能够通过 SPDK 查询 NVMf 存储设备的名称,以便能够访问这些存储设备。通过查询 NVMf 存储设备名称,存储应用程序可以获取必要的信息,例如存储设备的IP地址、端口号、名称等,以便能
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

实现实时监控告警系统:Kafka与Grafana整合

![实现实时监控告警系统:Kafka与Grafana整合](https://imgconvert.csdnimg.cn/aHR0cHM6Ly9tbWJpei5xcGljLmNuL21tYml6X2pwZy9BVldpY3ladXVDbEZpY1pLWmw2bUVaWXFUcEdLT1VDdkxRSmQxZXB5R1lxaWNlUjA2c0hFek5Qc3FyRktudFF1VDMxQVl3QTRXV2lhSWFRMEFRc0I1cW1ZOGcvNjQw?x-oss-process=image/format,png) # 1.1 Kafka集群架构 Kafka集群由多个称为代理的服务器组成,这
recommend-type

Windows 运行Python脚本

要在 Windows 上运行 Python 脚本,你需要先安装 Python。可以从官网下载 Python 安装包并按照提示进行安装。安装完成后,就可以在命令行中输入 `python` 命令,进入 Python 解释器环境。 接着,你可以编写 Python 脚本,保存为 `.py` 后缀的文件。在命令行中进入脚本所在的目录,输入 `python script.py` 命令来运行脚本。其中 `script.py` 是你的脚本文件名。 如果你想在 Windows 上运行一个 Python 程序,但不想打开命令行窗口,可以将脚本文件拖动到 Python 可执行文件 `python.exe` 上,