优化代码# GBDT 模型的网格搜索法 # 选择不同的参数 from sklearn.model_selection import GridSearchCV learning_rate_options = [0.01, 0.05, 0.1] max_depth_options = [3,5,7,9] n_estimators_options = [100, 300, 500] parameters = {'learning_rate':learning_rate_options, 'max_depth':max_depth_options, 'n_estimators':n_estimators_options} grid_gbdt = GridSearchCV(estimator= GradientBoostingClassifier(),param_grid=parameters,cv=10,scoring='accuracy') grid_gbdt.fit(X_train, y_train) # 结果输出 grid_gbdt.grid_scores_,grid_gbdt.best_params_, grid_gbdt.best_score_,一直运行无法显示结果
时间: 2024-03-01 10:56:13 浏览: 192
您可以尝试将最后一行的输出改为以下内容:
```
print(grid_gbdt.cv_results_)
print(grid_gbdt.best_params_)
print(grid_gbdt.best_score_)
```
这样就可以输出网格搜索的结果、最佳参数和最佳得分了。如果仍然无法显示结果,可能是因为您的数据集太大或参数组合太多,导致模型训练时间过长。您可以尝试减少参数组合或使用更小的数据集进行实验。
相关问题
优化代码 增加参数搜索的步长或者减少搜索范围 # GBDT 模型的网格搜索法 # 选择不同的参数 from sklearn.model_selection import GridSearchCV learning_rate_options = [0.01, 0.05, 0.1] max_depth_options = [3,5,7,9] n_estimators_options = [100, 300, 500] parameters = {'learning_rate':learning_rate_options, 'max_depth':max_depth_options, 'n_estimators':n_estimators_options} grid_gbdt = GridSearchCV(estimator= GradientBoostingClassifier(),param_grid=parameters,cv=10,scoring='accuracy') grid_gbdt.fit(X_train, y_train) # 结果输出 grid_gbdt.best_score_
可以尝试增加参数搜索的步长,比如将learning_rate_options改为[0.01, 0.05, 0.1, 0.2],或者将max_depth_options改为[3, 6, 9]。也可以减少搜索范围,比如将n_estimators_options改为[100, 200, 300]。这样可以在保证搜索精度的前提下,减少搜索时间。
修改后的代码示例:
```
from sklearn.model_selection import GridSearchCV
learning_rate_options = [0.01, 0.05, 0.1, 0.2]
max_depth_options = [3, 6, 9]
n_estimators_options = [100, 200, 300]
parameters = {'learning_rate':learning_rate_options,
'max_depth':max_depth_options,
'n_estimators':n_estimators_options}
grid_gbdt = GridSearchCV(estimator= GradientBoostingClassifier(),
param_grid=parameters,
cv=10,
scoring='accuracy')
grid_gbdt.fit(X_train, y_train)
# 结果输出
print("最优参数:", grid_gbdt.best_params_)
print("最优模型:", grid_gbdt.best_estimator_)
print("最优得分:", grid_gbdt.best_score_)
```
from sklearn.ensemble import GradientBoostingClassifier from sklearn.datasets import load_iris from sklearn.model_selection import train_test_split, GridSearchCV from sklearn.metrics import accuracy_score from sklearn.tree import export_graphviz import graphviz from IPython.display import display # 加载iris数据集 iris = load_iris() X = iris.data y = iris.target什么意思
这段代码是使用 Python 的 scikit-learn 库对鸢尾花数据集进行分类任务的示例。
首先,代码中从 `sklearn.ensemble` 中导入了 `GradientBoostingClassifier` 类,它是一种基于决策树的集成学习算法,用于构建梯度提升决策树模型;从 `sklearn.datasets` 中导入了 `load_iris` 函数,用于加载鸢尾花数据集;从 `sklearn.model_selection` 中导入了 `train_test_split` 和 `GridSearchCV` 函数,用于划分训练集和测试集,并进行网格搜索优化模型参数;从 `sklearn.metrics` 中导入了 `accuracy_score` 函数,用于计算分类准确率;从 `sklearn.tree` 中导入了 `export_graphviz` 函数,用于将决策树导出为 Graphviz 格式;从 `graphviz` 中导入了 `graphviz` 函数,用于在 Jupyter Notebook 中显示决策树图;最后从 `IPython.display` 中导入了 `display` 函数,用于显示决策树图。
接下来,代码中加载了鸢尾花数据集,并将特征矩阵赋值给 `X`,将目标变量赋值给 `y`。
接下来,可以对数据进行训练集和测试集的划分,例如:
```python
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
```
然后,可以创建一个 `GradientBoostingClassifier` 的实例,并进行模型训练与预测,例如:
```python
gbdt = GradientBoostingClassifier()
gbdt.fit(X_train, y_train)
y_pred = gbdt.predict(X_test)
```
接着,可以使用 `GridSearchCV` 函数对模型进行网格搜索优化参数,例如:
```python
param_grid = {
'n_estimators': [50, 100, 200],
'learning_rate': [0.1, 0.05, 0.01],
'max_depth': [3, 5, 7]
}
grid_search = GridSearchCV(estimator=gbdt, param_grid=param_grid, cv=5)
grid_search.fit(X_train, y_train)
best_estimator = grid_search.best_estimator_
```
最后,可以计算模型的分类准确率,并将决策树导出为 Graphviz 格式并显示在 Jupyter Notebook 中,例如:
```python
accuracy = accuracy_score(y_test, y_pred)
print('Accuracy:', accuracy)
dot_data = export_graphviz(best_estimator.estimators_[0, 0], out_file=None, feature_names=iris.feature_names, class_names=iris.target_names, filled=True, rounded=True, special_characters=True)
graph = graphviz.Source(dot_data)
display(graph)
```
以上代码中,`best_estimator.estimators_[0, 0]` 表示取训练好的第一个决策树模型。`export_graphviz` 函数可以将决策树导出为 Graphviz 格式的字符串。`graphviz.Source` 函数可以将 Graphviz 格式的字符串转换为 Jupyter Notebook 可以显示的图形。
阅读全文