def check_accuracy(self, X, y, num_samples=None, batch_size=2): # Maybe subsample the data N = X.shape[0] if num_samples is not None and N > num_samples: # 随机选取num_samples张图片,返回选取图片索引 mask = np.random.choice(N, num_samples) N = num_samples X = X[mask] y = y[mask] num_batches = N // batch_size if N % batch_size != 0: num_batches += 1 y_pred = [] for i in range(num_batches): start = i * batch_size end = (i + 1) * batch_size scores = self.model.loss(X[start:end]) y_pred.append(np.argmax(scores, axis=1)) y_pred = np.hstack(y_pred) acc = np.mean(y_pred == y) return acc
时间: 2024-02-14 12:23:25 浏览: 139
解决keras,val_categorical_accuracy:,0.0000e+00问题
这段代码是用于检查模型准确率的,其中参数X代表输入数据,y代表对应的标签数据。如果num_samples不为None,则从输入数据中随机选取num_samples张图片进行检查。batch_size是指每个batch的大小。函数中首先计算需要划分的batch数,然后对每个batch计算模型的输出并将预测结果存储在y_pred列表中。最后将所有的预测结果连接起来,计算准确率并返回。
阅读全文