写一个使用人工鱼群算法解决TSP问题的Python代码
时间: 2024-05-01 09:20:08 浏览: 155
以下是使用人工鱼群算法解决TSP问题的Python代码:
```python
import numpy as np
import random
class Fish:
def __init__(self, n_cities):
self.n_cities = n_cities
self.path = np.random.permutation(n_cities)
self.step_size = 0
def __lt__(self, other):
return self.fitness() < other.fitness()
def fitness(self):
# calculate the total distance of the path
dist = 0
for i in range(self.n_cities):
dist += np.linalg.norm(cities[self.path[i]] - cities[self.path[(i+1)%self.n_cities]])
return dist
def update_step_size(self, best, worst):
# update the step size of the fish
self.step_size += random.uniform(0, 1) * (best.step_size - worst.step_size)
def move(self, visual, delta):
# move the fish based on its visual and step size
direction = np.zeros(2)
for i in visual:
direction += cities[self.path[i]] - cities[self.path[self.n_cities-i-1]]
move = delta * direction / np.linalg.norm(direction)
new_path = np.copy(self.path)
i, j = np.random.choice(self.n_cities, 2, replace=False)
new_path[i], new_path[j] = new_path[j], new_path[i]
new_fish = Fish(self.n_cities)
new_fish.path = new_path
new_fish.step_size = self.step_size
new_fish.path += move.astype(int)
return new_fish
def generate_visual(fish, population, visual_range):
# generate visual for the fish
dist = np.zeros(population)
for i in range(population):
dist[i] = np.linalg.norm(cities[fish.path]-cities[population[i].path])
visual = np.argsort(dist)[:visual_range]
return visual
def update_population(population, step_size):
# update the population's step size
for i in range(len(population)):
population[i].step_size = step_size
def fish_swarm_algorithm(n_cities, population_size, iterations):
# initialize the population of fish
global cities
cities = np.random.rand(n_cities, 2)
population = []
for i in range(population_size):
population.append(Fish(n_cities))
# start the iterations
for j in range(iterations):
# sort the population based on fitness
population.sort()
# update the step size of the fish in the population
update_population(population, 0.1 * population[0].fitness())
# update the step size and move the fish
for i in range(population_size):
visual = generate_visual(population[i], population, int(population_size/5))
population[i].update_step_size(population[0], population[-1])
population[i] = population[i].move(visual, population[i].step_size)
# sort the population based on fitness and return the best path
population.sort()
return population[0].path
```
使用示例:
```python
n_cities = 10
population_size = 50
iterations = 100
path = fish_swarm_algorithm(n_cities, population_size, iterations)
print("Best path:", path)
```
注意:上面的代码仅仅是一个简单的实现示例,实际应用中可能需要进行更多的调整和优化。
阅读全文