写一个人工鱼群算法解决TSP问题的PYTHON代码
时间: 2024-05-16 07:13:15 浏览: 118
以下是一个简单的人工鱼群算法解决TSP问题的PYTHON代码:
```python
import random
import numpy as np
# 定义TSP问题中的城市数量
city_num = 20
# 定义人工鱼群算法的参数
alpha = 0.6 # 个体运动速度
beta = 0.2 # 鱼群聚集速度
delta = 0.8 # 拥挤度
visual = 0.15 # 可视范围
step = 0.2 # 步长
iter_num = 100 # 迭代次数
fish_num = 50 # 鱼群数量
best_distance = np.inf # 最优解的路径长度
# 生成城市坐标
city_pos = np.random.rand(city_num, 2)
# 计算城市之间的距离
city_distance = np.zeros((city_num, city_num))
for i in range(city_num):
for j in range(city_num):
if i != j:
city_distance[i, j] = np.linalg.norm(city_pos[i, :] - city_pos[j, :])
# 随机初始化鱼群位置
fish_pos = np.zeros((fish_num, city_num), dtype=int)
for i in range(fish_num):
fish_pos[i, :] = np.random.permutation(city_num)
# 开始迭代
for k in range(iter_num):
# 计算每条路径的适应度
fitness = np.zeros(fish_num)
for i in range(fish_num):
distance = 0
for j in range(city_num - 1):
distance += city_distance[fish_pos[i, j], fish_pos[i, j + 1]]
distance += city_distance[fish_pos[i, -1], fish_pos[i, 0]]
fitness[i] = 1 / distance
if distance < best_distance:
best_distance = distance
best_path = fish_pos[i, :]
# 计算每条路径的相对适应度
relative_fitness = fitness / np.sum(fitness)
# 计算每条路径的移动距离和方向
move_distance = np.zeros((fish_num, city_num))
move_direction = np.zeros((fish_num, city_num))
for i in range(fish_num):
for j in range(city_num):
temp_pos = np.copy(fish_pos[i, :])
temp_pos = np.roll(temp_pos, -j)
temp_pos = temp_pos[1:]
visible_fish_num = 0
for l in range(fish_num):
if l != i and np.linalg.norm(temp_pos - fish_pos[l, :-1]) < visual:
visible_fish_num += 1
move_distance[i, j] += relative_fitness[l]
move_direction[i, j] += relative_fitness[l] * (fish_pos[l, j] - fish_pos[i, j])
if visible_fish_num > 0:
move_direction[i, j] /= visible_fish_num
# 计算每条路径的速度和移动位置
fish_speed = np.zeros((fish_num, city_num))
fish_pos_new = np.zeros((fish_num, city_num), dtype=int)
for i in range(fish_num):
for j in range(city_num):
fish_speed[i, j] = alpha * fish_speed[i, j] + beta * move_distance[i, j] + delta * move_direction[i, j]
fish_pos_new[i, j] = np.mod(fish_pos[i, j] + np.round(step * fish_speed[i, j]), city_num)
fish_pos = fish_pos_new
print("最优路径长度:", best_distance)
print("最优路径:", best_path)
```
在这个代码中,我们首先初始化了TSP问题中的城市坐标,然后随机初始化了鱼群的位置。接着,我们开始迭代,计算每条路径的适应度和相对适应度,然后计算每条路径的移动距离和方向,最后计算每条路径的速度和移动位置,更新鱼群位置。最终输出最优路径和路径长度。
需要注意的是,这个代码只是一个简单的实现,可能无法得到最优解。如果需要得到更好的解决方案,可以调整参数或使用其他优化算法。
阅读全文