matlab编写rbf神经
时间: 2023-11-19 09:50:40 浏览: 88
要编写RBF神经网络,需要进行以下步骤:
1. 准备数据集,包括输入数据和对应的输出数据。
2. 设计RBF神经网络的结构,包括输入层、隐含层和输出层的节点数,以及RBF函数的类型和参数。
3. 初始化网络参数,包括隐含层的权重和偏置,以及输出层的权重和偏置。
4. 训练网络,使用数据集进行反向传播算法,更新网络参数,直到达到预设的训练误差或训练次数。
5. 使用训练好的网络进行预测。
下面是一个简单的MATLAB代码示例:
```matlab
% 准备数据集
x = [0 0; 0 1; 1 0; 1 1];
y = [0; 1; 1; 0];
% 设计RBF神经网络结构
inputSize = size(x, 2);
hiddenSize = 4;
outputSize = 1;
rbfType = 'gaussian';
rbfParam = 1;
% 初始化网络参数
hiddenWeight = randn(hiddenSize, inputSize);
hiddenBias = randn(hiddenSize, 1);
outputWeight = randn(outputSize, hiddenSize);
outputBias = randn(outputSize, 1);
% 训练网络
maxEpochs = 1000;
learningRate = 0.1;
targetError = 0.01;
for epoch = 1:maxEpochs
% 前向传播
hiddenOutput = rbf(x, hiddenWeight, hiddenBias, rbfType, rbfParam);
output = sigmoid(outputWeight * hiddenOutput + outputBias);
% 反向传播
deltaOutput = (output - y) .* sigmoidDerivative(output);
deltaHidden = (outputWeight' * deltaOutput) .* rbfDerivative(x, hiddenWeight, hiddenBias, rbfType, rbfParam);
% 更新参数
outputWeight = outputWeight - learningRate * deltaOutput * hiddenOutput';
outputBias = outputBias - learningRate * deltaOutput;
hiddenWeight = hiddenWeight - learningRate * deltaHidden * x;
hiddenBias = hiddenBias - learningRate * deltaHidden;
% 计算误差
error = sum((output - y).^2) / size(x, 1);
% 判断是否达到目标误差
if error < targetError
break;
end
end
% 使用训练好的网络进行预测
hiddenOutput = rbf(x, hiddenWeight, hiddenBias, rbfType, rbfParam);
output = sigmoid(outputWeight * hiddenOutput + outputBias);
disp(output);
% RBF函数
function output = rbf(x, weight, bias, type, param)
switch type
case 'gaussian'
output = exp(-pdist2(x, weight).^2 / (2 * param^2));
case 'multiquadric'
output = sqrt(1 + pdist2(x, weight).^2 / param^2);
case 'inverse'
output = 1 ./ sqrt(1 + pdist2(x, weight).^2 / param^2);
otherwise
error('Unknown RBF type');
end
output = [output; ones(1, size(output, 2))];
output = bsxfun(@plus, weight * output, bias);
end
% RBF函数的导数
function output = rbfDerivative(x, weight, bias, type, param)
switch type
case 'gaussian'
output = -pdist2(x, weight) .* rbf(x, weight, bias, type, param) / param^2;
case 'multiquadric'
output = pdist2(x, weight) ./ (sqrt(1 + pdist2(x, weight).^2 / param^2) * param^2);
case 'inverse'
output = -pdist2(x, weight) ./ (sqrt(1 + pdist2(x, weight).^2 / param^2) * param^2);
otherwise
error('Unknown RBF type');
end
end
% sigmoid函数
function output = sigmoid(x)
output = 1 ./ (1 + exp(-x));
end
% sigmoid函数的导数
function output = sigmoidDerivative(x)
output = sigmoid(x) .* (1 - sigmoid(x));
end
```
阅读全文