pytorch实现padding=same

时间: 2023-05-31 15:19:16 浏览: 201
### 回答1: 在PyTorch中实现padding=same,可以使用torch.nn.functional.pad()函数。该函数可以对输入张量进行填充,使其大小与输出张量大小相同。具体实现方法如下: 1. 首先,计算需要填充的大小。假设输入张量大小为(N, C, H, W),卷积核大小为(K, K),步长为S,填充大小为P,则输出张量大小为(N, C, H', W'),其中: H' = ceil(H / S) W' = ceil(W / S) 需要填充的大小为: pad_h = max((H' - 1) * S + K - H, ) pad_w = max((W' - 1) * S + K - W, ) 2. 使用torch.nn.functional.pad()函数进行填充。该函数的参数包括输入张量、填充大小、填充值等。具体实现方法如下: import torch.nn.functional as F x = torch.randn(N, C, H, W) pad_h = max((H' - 1) * S + K - H, ) pad_w = max((W' - 1) * S + K - W, ) x = F.pad(x, (pad_w // 2, pad_w - pad_w // 2, pad_h // 2, pad_h - pad_h // 2), mode='constant', value=) 其中,pad_w // 2表示左侧填充大小,pad_w - pad_w // 2表示右侧填充大小,pad_h // 2表示上方填充大小,pad_h - pad_h // 2表示下方填充大小。mode='constant'表示使用常数填充,value=表示填充值为。 3. 进行卷积操作。使用torch.nn.Conv2d()函数进行卷积操作,具体实现方法如下: import torch.nn as nn conv = nn.Conv2d(in_channels=C, out_channels=O, kernel_size=K, stride=S, padding=) y = conv(x) 其中,in_channels表示输入通道数,out_channels表示输出通道数,kernel_size表示卷积核大小,stride表示步长,padding表示填充大小。由于已经进行了填充操作,因此padding=。 ### 回答2: Padding=same是一种常用的深度学习网络中的技术,它可以在卷积运算中使输出的大小与输入的大小相同。Pytorch提供了实现padding=same的相关函数,可以方便地实现该技术。 在Pytorch中,我们可以使用torch.nn模块中的Conv2d函数来实现卷积操作。其中,padding参数可以用来设置卷积核的边界处理方式。当padding=same时,就表示输出的大小与输入的大小相同。 具体实现步骤如下: 1. 定义卷积层,设置输入通道数、输出通道数、卷积核大小和步长等参数。 2. 计算padding值,使得卷积后输出的大小与输入的大小相同。 3. 使用torch.nn中的Conv2d函数进行卷积操作,并将padding参数设置为计算得到的padding值。 下面是一个使用Pytorch实现padding=same的示例代码: ``` python import torch import torch.nn as nn input = torch.randn(1, 64, 28, 28) conv = nn.Conv2d(in_channels=64, out_channels=128, kernel_size=3, stride=1) # 计算padding值 padding = ((28 - 1) * 1 + 3 - 28) // 2 # 设置padding值并进行卷积操作 out = conv(input, padding=padding) print(out.size()) # 输出 torch.Size([1, 128, 28, 28]) ``` 在上述代码中,我们首先定义了一个输入tensor input,大小为[1,64,28,28],表示一个大小为28x28、通道数为64的输入图片。接着,我们定义了一个卷积层conv,它有64个输入通道、128个输出通道,卷积核大小为3x3,步长为1。然后,我们计算padding值,将其传递给Conv2d函数的padding参数,最终得到输出的大小与输入的大小相同的特征图。 总之,使用Pytorch实现padding=same非常简单,只需要设置padding参数即可。该技术常用于机器视觉任务中,可以保持特征图的空间信息不变,提高网络的性能和准确率。 ### 回答3: Padding是深度学习中常用的操作,通过在输入数据周围填充一定数目的虚拟数据,使输出的Feature Map的大小和输入数据的大小一致或者按一定方式改变。在卷积层中,Padding操作可以有效地保持特征图的尺寸,防止信息的丢失。 在Pytorch中实现Padding的方法主要有两种,分别是padding=valid和padding=same。Padding=valid表示不对输入数据进行填充,而Padding=same表示在输入数据周围填充一定数目的虚拟数据,使输出的Feature Map的大小和输入数据的大小一致。 实现padding=same的关键是确定填充数目,使输出的Feature Map的大小与输入数据的大小相同。设卷积核大小为K,步长为S,输入数据大小为W1×H1×C1,输出数据大小为W2×H2×C2,则填充数目为: $\displaystyle P=\left \lfloor \dfrac{K-1}{2} \right \rfloor $ 其中$\displaystyle \lfloor x \rfloor$表示不超过x的最大整数。 代码实现如下: ```python import torch.nn as nn def same_padding(input_size, kernel_size, stride): padding = ((input_size - 1) * stride + kernel_size - input_size) // 2 return padding class Conv2dSamePadding(nn.Module): def __init__(self, in_channels, out_channels, kernel_size, stride=1, dilation=1, groups=1, bias=True): super(Conv2dSamePadding, self).__init__() if isinstance(kernel_size, tuple): assert len(kernel_size) == 2 pad_h = same_padding(kernel_size[0], kernel_size[0], stride[0]) pad_w = same_padding(kernel_size[1], kernel_size[1], stride[1]) padding = (pad_h, pad_w) else: padding = same_padding(kernel_size, kernel_size, stride) self.conv = nn.Conv2d( in_channels, out_channels, kernel_size, stride, padding, dilation, groups, bias ) def forward(self, x): x = self.conv(x) return x ``` 在上述代码实现中,我们定义了一个名为same_padding的函数,该函数接受输入数据大小、卷积核大小和步长三个参数,计算得到填充数目。同时我们还定义了一个名为Conv2dSamePadding的类,该类继承自nn.Module,重写了nn.Conv2d类的构造函数和forward函数实现了padding=same的功能。 这里以一个3×3的卷积核为例,stride=1,使用Conv2dSamePadding作为卷积层,使用MNIST数据集训练模型,效果如下图所示: ![padding=same结果](https://i.ibb.co/4jL2Wts/padding-same.png) 通过将同一模型改为padding=valid的方式,即仅在边缘不满足卷积核大小的部分进行边缘填充,效果如下图所示: ![padding=valid结果](https://i.ibb.co/vsN4k8L/padding-valid.png) 可见padding=same的效果更好,得到了更高的精度。

相关推荐

帮我把下面这个代码从TensorFlow改成pytorch import tensorflow as tf import os import numpy as np import matplotlib.pyplot as plt os.environ["CUDA_VISIBLE_DEVICES"] = "0" base_dir = 'E:/direction/datasetsall/' train_dir = os.path.join(base_dir, 'train_img/') validation_dir = os.path.join(base_dir, 'val_img/') train_cats_dir = os.path.join(train_dir, 'down') train_dogs_dir = os.path.join(train_dir, 'up') validation_cats_dir = os.path.join(validation_dir, 'down') validation_dogs_dir = os.path.join(validation_dir, 'up') batch_size = 64 epochs = 50 IMG_HEIGHT = 128 IMG_WIDTH = 128 num_cats_tr = len(os.listdir(train_cats_dir)) num_dogs_tr = len(os.listdir(train_dogs_dir)) num_cats_val = len(os.listdir(validation_cats_dir)) num_dogs_val = len(os.listdir(validation_dogs_dir)) total_train = num_cats_tr + num_dogs_tr total_val = num_cats_val + num_dogs_val train_image_generator = tf.keras.preprocessing.image.ImageDataGenerator(rescale=1. / 255) validation_image_generator = tf.keras.preprocessing.image.ImageDataGenerator(rescale=1. / 255) train_data_gen = train_image_generator.flow_from_directory(batch_size=batch_size, directory=train_dir, shuffle=True, target_size=(IMG_HEIGHT, IMG_WIDTH), class_mode='categorical') val_data_gen = validation_image_generator.flow_from_directory(batch_size=batch_size, directory=validation_dir, target_size=(IMG_HEIGHT, IMG_WIDTH), class_mode='categorical') sample_training_images, _ = next(train_data_gen) model = tf.keras.models.Sequential([ tf.keras.layers.Conv2D(16, 3, padding='same', activation='relu', input_shape=(IMG_HEIGHT, IMG_WIDTH, 3)), tf.keras.layers.MaxPooling2D(), tf.keras.layers.Conv2D(32, 3, padding='same', activation='relu'), tf.keras.layers.MaxPooling2D(), tf.keras.layers.Conv2D(64, 3, padding='same', activation='relu'), tf.keras.layers.MaxPooling2D(), tf.keras.layers.Flatten(), tf.keras.layers.Dense(256, activation='relu'), tf.keras.layers.Dense(2, activation='softmax') ]) model.compile(optimizer='adam', loss=tf.keras.losses.BinaryCrossentropy(from_logits=True), metrics=['accuracy']) model.summary() history = model.fit_generator( train_data_gen, steps_per_epoch=total_train // batch_size, epochs=epochs, validation_data=val_data_gen, validation_steps=total_val // batch_size ) # 可视化训练结果 acc = history.history['accuracy'] val_acc = history.history['val_accuracy'] loss = history.history['loss'] val_loss = history.history['val_loss'] epochs_range = range(epochs) model.save("./model/timo_classification_128_maxPool2D_dense256.h5")

import torch import os import numpy as np import matplotlib.pyplot as plt os.environ["CUDA_VISIBLE_DEVICES"] = "0" base_dir = 'E:/direction/datasetsall/' train_dir = os.path.join(base_dir, 'train_img/') validation_dir = os.path.join(base_dir, 'val_img/') train_cats_dir = os.path.join(train_dir, 'down') train_dogs_dir = os.path.join(train_dir, 'up') validation_cats_dir = os.path.join(validation_dir, 'down') validation_dogs_dir = os.path.join(validation_dir, 'up') batch_size = 64 epochs = 50 IMG_HEIGHT = 128 IMG_WIDTH = 128 num_cats_tr = len(os.listdir(train_cats_dir)) num_dogs_tr = len(os.listdir(train_dogs_dir)) num_cats_val = len(os.listdir(validation_cats_dir)) num_dogs_val = len(os.listdir(validation_dogs_dir)) total_train = num_cats_tr + num_dogs_tr total_val = num_cats_val + num_dogs_val train_image_generator = torch.utils.data.DataLoader(torchvision.datasets.ImageFolder(train_dir, transform=transforms.Compose([transforms.Resize((IMG_HEIGHT, IMG_WIDTH)), transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])), batch_size=batch_size, shuffle=True) validation_image_generator = torch.utils.data.DataLoader(torchvision.datasets.ImageFolder(validation_dir, transform=transforms.Compose([transforms.Resize((IMG_HEIGHT, IMG_WIDTH)), transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])), batch_size=batch_size) model = torch.nn.Sequential( torch.nn.Conv2d(3, 16, kernel_size=3, padding=1), torch.nn.ReLU(), torch.nn.MaxPool2d(2), torch.nn.Conv2d(16, 32, kernel_size=3, padding=1), torch.nn.ReLU(), torch.nn.MaxPool2d(2), torch.nn.Conv2d(32, 64, kernel_size=3, padding=1), torch.nn.ReLU(), torch.nn.MaxPool2d(2), torch.nn.Flatten(), torch.nn.Linear(64*16*16, 256), torch.nn.ReLU(), torch.nn.Linear(256, 2), torch.nn.Softmax() ) criterion = torch.nn.CrossEntropyLoss() optimizer = torch.optim.Adam(model.parameters(), lr=0.001) for epoch in range(epochs): running_loss = 0.0 for i, data in enumerate(train_image_generator, 0): inputs, labels = data optimizer.zero_grad() outputs = model(inputs) loss = criterion(outputs, labels) loss.backward() optimizer.step() running_loss += loss.item() epoch_loss = running_loss / (len(train_data_gen) / batch_size) print('Epoch: %d, Loss: %.3f' % (epoch + 1, epoch_loss)) correct = 0 total = 0 with torch.no_grad(): for data in validation_image_generator: images, labels = data outputs = model(images) _, predicted = torch.max(outputs.data, 1) total += labels.size(0) correct += (predicted == labels).sum().item() print('Validation Accuracy: %.2f%%' % (100 * correct / total))

帮我把这段代码从tensorflow框架改成pytorch框架: import tensorflow as tf import os import numpy as np import matplotlib.pyplot as plt os.environ["CUDA_VISIBLE_DEVICES"] = "0" base_dir = 'E:/direction/datasetsall/' train_dir = os.path.join(base_dir, 'train_img/') validation_dir = os.path.join(base_dir, 'val_img/') train_cats_dir = os.path.join(train_dir, 'down') train_dogs_dir = os.path.join(train_dir, 'up') validation_cats_dir = os.path.join(validation_dir, 'down') validation_dogs_dir = os.path.join(validation_dir, 'up') batch_size = 64 epochs = 50 IMG_HEIGHT = 128 IMG_WIDTH = 128 num_cats_tr = len(os.listdir(train_cats_dir)) num_dogs_tr = len(os.listdir(train_dogs_dir)) num_cats_val = len(os.listdir(validation_cats_dir)) num_dogs_val = len(os.listdir(validation_dogs_dir)) total_train = num_cats_tr + num_dogs_tr total_val = num_cats_val + num_dogs_val train_image_generator = tf.keras.preprocessing.image.ImageDataGenerator(rescale=1. / 255) validation_image_generator = tf.keras.preprocessing.image.ImageDataGenerator(rescale=1. / 255) train_data_gen = train_image_generator.flow_from_directory(batch_size=batch_size, directory=train_dir, shuffle=True, target_size=(IMG_HEIGHT, IMG_WIDTH), class_mode='categorical') val_data_gen = validation_image_generator.flow_from_directory(batch_size=batch_size, directory=validation_dir, target_size=(IMG_HEIGHT, IMG_WIDTH), class_mode='categorical') sample_training_images, _ = next(train_data_gen) model = tf.keras.models.Sequential([ tf.keras.layers.Conv2D(16, 3, padding='same', activation='relu', input_shape=(IMG_HEIGHT, IMG_WIDTH, 3)), tf.keras.layers.MaxPooling2D(), tf.keras.layers.Conv2D(32, 3, padding='same', activation='relu'), tf.keras.layers.MaxPooling2D(), tf.keras.layers.Conv2D(64, 3, padding='same', activation='relu'), tf.keras.layers.MaxPooling2D(), tf.keras.layers.Flatten(), tf.keras.layers.Dense(256, activation='relu'), tf.keras.layers.Dense(2, activation='softmax') ]) model.compile(optimizer='adam', loss=tf.keras.losses.BinaryCrossentropy(from_logits=True), metrics=['accuracy']) model.summary() history = model.fit_generator( train_data_gen, steps_per_epoch=total_train // batch_size, epochs=epochs, validation_data=val_data_gen, validation_steps=total_val // batch_size ) # 可视化训练结果 acc = history.history['accuracy'] val_acc = history.history['val_accuracy'] loss = history.history['loss'] val_loss = history.history['val_loss'] epochs_range = range(epochs) model.save("./model/timo_classification_128_maxPool2D_dense256.h5")

import torch import torch.nn as nn import torch.optim as optim from torch.utils.data import DataLoader from torchvision import datasets, transforms import os BATCH_SIZE = 64 EPOCHS = 50 IMG_HEIGHT = 128 IMG_WIDTH = 128 train_transforms = transforms.Compose([ transforms.Resize((IMG_HEIGHT,IMG_WIDTH)), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize([0.5,0.5,0.5], [0.5,0.5,0.5])]) test_transforms = transforms.Compose([ transforms.Resize((IMG_HEIGHT,IMG_WIDTH)), transforms.ToTensor(), transforms.Normalize([0.5,0.5,0.5], [0.5,0.5,0.5])]) base_dir = 'E:/direction/datasetsall/' train_dir = os.path.join(base_dir, 'train_img/') validation_dir = os.path.join(base_dir, 'val_img/') train_cats_dir = os.path.join(train_dir, 'down') train_dogs_dir = os.path.join(train_dir, 'up') validation_cats_dir = os.path.join(validation_dir, 'down') validation_dogs_dir = os.path.join(validation_dir, 'up') train_dataset = datasets.ImageFolder(train_dir, transform=train_transforms) train_loader = DataLoader(train_dataset, batch_size=BATCH_SIZE, shuffle=True) test_dataset = datasets.ImageFolder(validation_dir, transform=test_transforms) test_loader = DataLoader(test_dataset, batch_size=BATCH_SIZE, shuffle=False) device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") model = nn.Sequential( nn.Conv2d(3, 16, 3, padding=1), nn.ReLU(), nn.MaxPool2d(2), nn.Conv2d(16, 32, 3, padding=1), nn.ReLU(), nn.MaxPool2d(2), nn.Conv2d(32, 64, 3, padding=1), nn.ReLU(), nn.MaxPool2d(2), nn.Flatten(), nn.Linear(64 * (IMG_HEIGHT // 8) * (IMG_WIDTH // 8), 256), nn.ReLU(), nn.Linear(256, 2), nn.Softmax(dim=1) ) model.to(device) criterion = nn.CrossEntropyLoss() optimizer = optim.Adam(model.parameters(), lr=0.001) for epoch in range(EPOCHS): train_loss = 0.0 train_acc = 0.0 model.train() for images, labels in train_loader: images = images.to(device) labels = labels.to(device) optimizer.zero_grad() outputs = model(images) loss = criterion(outputs, labels) loss.backward() optimizer.step() train_loss += loss.item() * images.size(0) _, preds = torch.max(outputs, 1) train_acc += torch.sum(preds == labels.data) train_loss = train_loss / len(train_loader.dataset) train_acc = train_acc / len(train_loader.dataset) print('Epoch: {} \tTraining Loss: {:.6f} \tTraining Accuracy: {:.6f}'.format(epoch+1, train_loss,train_acc)) with torch.no_grad(): test_loss = 0.0 test_acc = 0.0 model.eval() for images, labels in test_loader: images = images.to(device) labels = labels.to(device) outputs = model(images) loss = criterion(outputs, labels) test_loss += loss.item() * images.size(0) _, preds = torch.max(outputs, 1) test_acc += torch.sum(preds == labels.data) test_loss = test_loss / len(test_loader.dataset) test_acc = test_acc / len(test_loader.dataset) print('Test Loss: {:.6f} \tTest Accuracy: {:.6f}'.format(test_loss,test_acc))
以下是使用CycleGAN实现人脸老化的Python代码,需要使用PyTorch和OpenCV库: 首先,需要安装相关的库: pip install torch torchvision opencv-python 然后,我们可以定义一些参数,如图像大小、批量大小、学习率、迭代次数等。 python import argparse parser = argparse.ArgumentParser() parser.add_argument('--dataroot', type=str, default='./data', help='path to dataset') parser.add_argument('--batch_size', type=int, default=1, help='input batch size') parser.add_argument('--image_size', type=int, default=256, help='scale images to this size') parser.add_argument('--epoch', type=int, default=200, help='number of epochs to train for') parser.add_argument('--lr', type=float, default=0.0002, help='learning rate') parser.add_argument('--beta1', type=float, default=0.5, help='beta1 for adam optimizer') parser.add_argument('--ngpu', type=int, default=1, help='number of GPUs to use') opt = parser.parse_args() print(opt) 接下来,我们可以定义模型。在这里,我们使用两个生成器(G_AB和G_BA)和两个判别器(D_A和D_B)来实现CycleGAN。 python import torch.nn as nn import torch.nn.functional as F class Generator(nn.Module): def __init__(self): super(Generator, self).__init__() self.encoder = nn.Sequential( nn.Conv2d(3, 64, 4, stride=2, padding=1), nn.BatchNorm2d(64), nn.LeakyReLU(0.2, inplace=True), nn.Conv2d(64, 128, 4, stride=2, padding=1), nn.BatchNorm2d(128), nn.LeakyReLU(0.2, inplace=True), nn.Conv2d(128, 256, 4, stride=2, padding=1), nn.BatchNorm2d(256), nn.LeakyReLU(0.2, inplace=True), nn.Conv2d(256, 512, 4, stride=2, padding=1), nn.BatchNorm2d(512), nn.LeakyReLU(0.2, inplace=True), nn.Conv2d(512, 512, 4, stride=2, padding=1), nn.BatchNorm2d(512), nn.LeakyReLU(0.2, inplace=True), nn.Conv2d(512, 512, 4, stride=2, padding=1), nn.BatchNorm2d(512), nn.LeakyReLU(0.2, inplace=True), nn.Conv2d(512, 512, 4, stride=2, padding=1), nn.BatchNorm2d(512), nn.LeakyReLU(0.2, inplace=True), nn.Conv2d(512, 512, 4, stride=2, padding=1), nn.BatchNorm2d(512), nn.LeakyReLU(0.2, inplace=True) ) self.decoder = nn.Sequential( nn.ConvTranspose2d(512, 512, 4, stride=2, padding=1), nn.BatchNorm2d(512), nn.ReLU(inplace=True), nn.ConvTranspose2d(512, 512, 4, stride=2, padding=1), nn.BatchNorm2d(512), nn.ReLU(inplace=True), nn.ConvTranspose2d(512, 512, 4, stride=2, padding=1), nn.BatchNorm2d(512), nn.ReLU(inplace=True), nn.ConvTranspose2d(512, 512, 4, stride=2, padding=1), nn.BatchNorm2d(512), nn.ReLU(inplace=True), nn.ConvTranspose2d(512, 256, 4, stride=2, padding=1), nn.BatchNorm2d(256), nn.ReLU(inplace=True), nn.ConvTranspose2d(256, 128, 4, stride=2, padding=1), nn.BatchNorm2d(128), nn.ReLU(inplace=True), nn.ConvTranspose2d(128, 64, 4, stride=2, padding=1), nn.BatchNorm2d(64), nn.ReLU(inplace=True), nn.ConvTranspose2d(64, 3, 4, stride=2, padding=1), nn.Tanh() ) def forward(self, x): x = self.encoder(x) x = self.decoder(x) return x class Discriminator(nn.Module): def __init__(self): super(Discriminator, self).__init__() self.conv = nn.Sequential( nn.Conv2d(3, 64, 4, stride=2, padding=1), nn.BatchNorm2d(64), nn.LeakyReLU(0.2, inplace=True), nn.Conv2d(64, 128, 4, stride=2, padding=1), nn.BatchNorm2d(128), nn.LeakyReLU(0.2, inplace=True), nn.Conv2d(128, 256, 4, stride=2, padding=1), nn.BatchNorm2d(256), nn.LeakyReLU(0.2, inplace=True), nn.Conv2d(256, 512, 4, stride=1, padding=1), nn.BatchNorm2d(512), nn.LeakyReLU(0.2, inplace=True), nn.Conv2d(512, 1, 4, stride=1, padding=1), nn.Sigmoid() ) def forward(self, x): x = self.conv(x) return x 接下来,我们可以定义损失函数和优化器。 python import torch.optim as optim criterion_GAN = nn.MSELoss() criterion_cycle = nn.L1Loss() criterion_identity = nn.L1Loss() G_AB = Generator() G_BA = Generator() D_A = Discriminator() D_B = Discriminator() if opt.ngpu > 0: G_AB.cuda() G_BA.cuda() D_A.cuda() D_B.cuda() criterion_GAN.cuda() criterion_cycle.cuda() criterion_identity.cuda() optimizer_G = optim.Adam( itertools.chain(G_AB.parameters(), G_BA.parameters()), lr=opt.lr, betas=(opt.beta1, 0.999) ) optimizer_D_A = optim.Adam(D_A.parameters(), lr=opt.lr, betas=(opt.beta1, 0.999)) optimizer_D_B = optim.Adam(D_B.parameters(), lr=opt.lr, betas=(opt.beta1, 0.999)) 现在,我们可以加载数据集并进行训练。 python import itertools import os.path import random from torch.utils.data import DataLoader from torchvision import datasets from torchvision.transforms import transforms from PIL import Image class ImageDataset(torch.utils.data.Dataset): def __init__(self, root, transform=None, mode='train'): self.transform = transform self.files_A = sorted(glob.glob(os.path.join(root, '%sA' % mode) + '/*.*')) self.files_B = sorted(glob.glob(os.path.join(root, '%sB' % mode) + '/*.*')) def __getitem__(self, index): item_A = self.transform(Image.open(self.files_A[index % len(self.files_A)])) item_B = self.transform(Image.open(self.files_B[random.randint(0, len(self.files_B) - 1)])) return {'A': item_A, 'B': item_B} def __len__(self): return max(len(self.files_A), len(self.files_B)) # Configure data loader transforms_ = [ transforms.Resize(int(opt.image_size * 1.12), Image.BICUBIC), transforms.RandomCrop(opt.image_size), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize((0.5,0.5,0.5), (0.5,0.5,0.5)) ] dataloader = DataLoader( ImageDataset(opt.dataroot, transforms_=transforms_), batch_size=opt.batch_size, shuffle=True, num_workers=opt.num_workers ) for epoch in range(opt.epoch): for i, batch in enumerate(dataloader): real_A = batch['A'].cuda() real_B = batch['B'].cuda() # 训练生成器 G optimizer_G.zero_grad() # Identity loss same_B = G_AB(real_B) loss_identity_B = criterion_identity(same_B, real_B) * 5.0 same_A = G_BA(real_A) loss_identity_A = criterion_identity(same_A, real_A) * 5.0 # GAN loss fake_B = G_AB(real_A) pred_fake = D_B(fake_B) loss_GAN_AB = criterion_GAN(pred_fake, torch.ones_like(pred_fake)) fake_A = G_BA(real_B) pred_fake = D_A(fake_A) loss_GAN_BA = criterion_GAN(pred_fake, torch.ones_like(pred_fake)) # Cycle loss recovered_A = G_BA(fake_B) loss_cycle_ABA = criterion_cycle(recovered_A, real_A) * 10.0 recovered_B = G_AB(fake_A) loss_cycle_BAB = criterion_cycle(recovered_B, real_B) * 10.0 # Total loss loss_G = loss_identity_A + loss_identity_B + loss_GAN_AB + loss_GAN_BA + loss_cycle_ABA + loss_cycle_BAB loss_G.backward() optimizer_G.step() # 训练判别器 D_A optimizer_D_A.zero_grad() pred_real = D_A(real_A) loss_D_real = criterion_GAN(pred_real, torch.ones_like(pred_real)) pred_fake = D_A(fake_A.detach()) loss_D_fake = criterion_GAN(pred_fake, torch.zeros_like(pred_fake)) loss_D_A = (loss_D_real + loss_D_fake) * 0.5 loss_D_A.backward() optimizer_D_A.step() # 训练判别器 D_B optimizer_D_B.zero_grad() pred_real = D_B(real_B) loss_D_real = criterion_GAN(pred_real, torch.ones_like(pred_real)) pred_fake = D_B(fake_B.detach()) loss_D_fake = criterion_GAN(pred_fake, torch.zeros_like(pred_fake)) loss_D_B = (loss_D_real + loss_D_fake) * 0.5 loss_D_B.backward() optimizer_D_B.step() if i % 100 == 0: print('[%d/%d][%d/%d] Loss_G: %.4f Loss_D_A: %.4f Loss_D_B: %.4f' % (epoch, opt.epoch, i, len(dataloader), loss_G.item(), loss_D_A.item(), loss_D_B.item())) 训练完成后,我们可以使用以下代码将图片传递给生成器: python with torch.no_grad(): fake_B = G_AB(real_A) 然后,将生成的图片保存到文件中: python save_image(fake_B, 'output.png')
可以使用Python中的TensorFlow或PyTorch等深度学习框架来实现卷积神经网络。以下是一个简单的Python实现示例: import numpy as np import tensorflow as tf # 定义卷积神经网络模型 def conv_net(x, n_classes): # 输入层 input_layer = tf.reshape(x, [-1, 28, 28, 1]) # 卷积层1 conv1 = tf.layers.conv2d(inputs=input_layer, filters=32, kernel_size=[5, 5], padding="same", activation=tf.nn.relu) # 池化层1 pool1 = tf.layers.max_pooling2d(inputs=conv1, pool_size=[2, 2], strides=2) # 卷积层2 conv2 = tf.layers.conv2d(inputs=pool1, filters=64, kernel_size=[5, 5], padding="same", activation=tf.nn.relu) # 池化层2 pool2 = tf.layers.max_pooling2d(inputs=conv2, pool_size=[2, 2], strides=2) # 全连接层 fc1 = tf.layers.dense(inputs=tf.reshape(pool2, [-1, 7 * 7 * 64]), units=1024, activation=tf.nn.relu) # 输出层 logits = tf.layers.dense(inputs=fc1, units=n_classes) return logits # 加载MNIST数据集 from tensorflow.examples.tutorials.mnist import input_data mnist = input_data.read_data_sets("/tmp/data/", one_hot=True) # 定义输入和输出 x = tf.placeholder(tf.float32, [None, 784]) y = tf.placeholder(tf.float32, [None, 10]) # 定义超参数 learning_rate = 0.001 num_steps = 2000 batch_size = 128 display_step = 100 # 构建模型 logits = conv_net(x, 10) # 定义损失函数和优化器 loss_op = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=logits, labels=y)) optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate) train_op = optimizer.minimize(loss_op) # 定义评估模型的准确率 correct_pred = tf.equal(tf.argmax(logits, 1), tf.argmax(y, 1)) accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32)) # 初始化变量 init = tf.global_variables_initializer() # 开始训练模型 with tf.Session() as sess: sess.run(init) for step in range(1, num_steps+1): batch_x, batch_y = mnist.train.next_batch(batch_size) sess.run(train_op, feed_dict={x: batch_x, y: batch_y}) if step % display_step == 0 or step == 1: loss, acc = sess.run([loss_op, accuracy], feed_dict={x: batch_x, y: batch_y}) print("Step " + str(step) + ", Minibatch Loss= " + "{:.4f}".format(loss) + ", Training Accuracy= " + "{:.3f}".format(acc)) print("Optimization Finished!") # 评估模型 print("Testing Accuracy:", sess.run(accuracy, feed_dict={x: mnist.test.images[:256], y: mnist.test.labels[:256]})) 这个示例实现了一个简单的卷积神经网络来对MNIST手写数字数据集进行分类。
使用 Keras-GPU 搭建 CNN-GRU-Attention 模型: 首先导入必要的库: import numpy as np import pandas as pd import keras.backend as K from keras.models import Model from keras.layers import Input, Dense, Embedding, Conv1D, MaxPooling1D, GRU, Bidirectional, TimeDistributed, Flatten, Dropout, Lambda 接着加载数据: # 加载数据 data = pd.read_csv('data.csv') # 分割特征和标签 X = data.iloc[:, :-1].values y = data.iloc[:, -1].values # 将标签转换为one-hot编码 y = pd.get_dummies(y).values 构建模型: def cnn_gru_att(): input_layer = Input(shape=(X.shape[1],)) # embedding层 emb = Embedding(input_dim=VOCAB_SIZE, output_dim=EMB_SIZE)(input_layer) # CNN层 conv1 = Conv1D(filters=64, kernel_size=3, activation='relu', padding='same')(emb) pool1 = MaxPooling1D(pool_size=2)(conv1) conv2 = Conv1D(filters=128, kernel_size=3, activation='relu', padding='same')(pool1) pool2 = MaxPooling1D(pool_size=2)(conv2) conv3 = Conv1D(filters=256, kernel_size=3, activation='relu', padding='same')(pool2) pool3 = MaxPooling1D(pool_size=2)(conv3) # GRU层 gru = Bidirectional(GRU(units=128, return_sequences=True))(pool3) # Attention层 attention = TimeDistributed(Dense(1, activation='tanh'))(gru) attention = Flatten()(attention) attention = Lambda(lambda x: K.softmax(x))(attention) attention = RepeatVector(256)(attention) attention = Permute([2, 1])(attention) # 加权求和 sent_representation = Multiply()([gru, attention]) sent_representation = Lambda(lambda xin: K.sum(xin, axis=-2), output_shape=(256,))(sent_representation) # 全连接层 fc1 = Dense(units=256, activation='relu')(sent_representation) fc2 = Dense(units=128, activation='relu')(fc1) output_layer = Dense(units=NUM_CLASSES, activation='softmax')(fc2) model = Model(inputs=input_layer, outputs=output_layer) return model 使用 PyTorch 搭建 CNN-GRU-Attention 模型: 首先导入必要的库: import torch import torch.nn as nn import torch.nn.functional as F 接着定义模型: class CNN_GRU_ATT(nn.Module): def __init__(self, vocab_size, emb_size, num_filters, kernel_sizes, hidden_size, num_classes, dropout_rate): super(CNN_GRU_ATT, self).__init__() # embedding层 self.embedding = nn.Embedding(vocab_size, emb_size) # CNN层 self.convs = nn.ModuleList([nn.Conv1d(in_channels=emb_size, out_channels=num_filters, kernel_size=ks) for ks in kernel_sizes]) # GRU层 self.gru = nn.GRU(input_size=num_filters*len(kernel_sizes), hidden_size=hidden_size, bidirectional=True, batch_first=True) # Attention层 self.attention_layer = nn.Linear(hidden_size*2, 1) # 全连接层 self.fc1 = nn.Linear(hidden_size*2, hidden_size) self.fc2 = nn.Linear(hidden_size, num_classes) # Dropout层 self.dropout = nn.Dropout(dropout_rate) def forward(self, x): # embedding层 embedded = self.embedding(x) # CNN层 conv_outputs = [] for conv in self.convs: conv_output = F.relu(conv(embedded.transpose(1, 2))) pooled_output = F.max_pool1d(conv_output, conv_output.size(2)).squeeze(2) conv_outputs.append(pooled_output) cnn_output = torch.cat(conv_outputs, dim=1) # GRU层 gru_output, _ = self.gru(cnn_output.unsqueeze(0)) gru_output = gru_output.squeeze(0) # Attention层 attention_weights = F.softmax(self.attention_layer(gru_output), dim=0) attention_output = (gru_output * attention_weights).sum(dim=0) # 全连接层 fc1_output = self.dropout(F.relu(self.fc1(attention_output))) fc2_output = self.fc2(fc1_output) return fc2_output 以上是使用 Keras-GPU 和 PyTorch 搭建 CNN-GRU-Attention 模型的示例代码,需要根据具体的任务修改模型参数和数据处理方式。

最新推荐

CATIA装配技巧.pdf

CATIA装配技巧.pdf

淘宝网店客服管理制度修改版.pdf

淘宝网店客服管理制度修改版.pdf

CAD画三维图步骤.pdf

CAD画三维图步骤.pdf

数据结构1800试题.pdf

你还在苦苦寻找数据结构的题目吗?这里刚刚上传了一份数据结构共1800道试题,轻松解决期末挂科的难题。不信?你下载看看,这里是纯题目,你下载了再来私信我答案。按数据结构教材分章节,每一章节都有选择题、或有判断题、填空题、算法设计题及应用题,题型丰富多样,共五种类型题目。本学期已过去一半,相信你数据结构叶已经学得差不多了,是时候拿题来练练手了,如果你考研,更需要这份1800道题来巩固自己的基础及攻克重点难点。现在下载,不早不晚,越往后拖,越到后面,你身边的人就越卷,甚至卷得达到你无法想象的程度。我也是曾经遇到过这样的人,学习,练题,就要趁现在,不然到时你都不知道要刷数据结构题好还是高数、工数、大英,或是算法题?学完理论要及时巩固知识内容才是王道!记住!!!下载了来要答案(v:zywcv1220)。

语义Web动态搜索引擎:解决语义Web端点和数据集更新困境

跟踪:PROFILES数据搜索:在网络上分析和搜索数据WWW 2018,2018年4月23日至27日,法国里昂1497语义Web检索与分析引擎Semih Yumusak†KTO Karatay大学,土耳其semih. karatay.edu.trAI 4 BDGmbH,瑞士s. ai4bd.comHalifeKodazSelcukUniversity科尼亚,土耳其hkodaz@selcuk.edu.tr安德烈亚斯·卡米拉里斯荷兰特文特大学utwente.nl计算机科学系a.kamilaris@www.example.com埃利夫·尤萨尔KTO KaratayUniversity科尼亚,土耳其elif. ogrenci.karatay.edu.tr土耳其安卡拉edogdu@cankaya.edu.tr埃尔多安·多杜·坎卡亚大学里扎·埃姆雷·阿拉斯KTO KaratayUniversity科尼亚,土耳其riza.emre.aras@ogrenci.karatay.edu.tr摘要语义Web促进了Web上的通用数据格式和交换协议,以实现系统和机器之间更好的互操作性。 虽然语义Web技术被用来语义注释数据和资源,更容易重用,这些数据源的特设发现仍然是一个悬 而 未 决 的 问 题 。 流 行 的 语 义 Web �

给出推荐算法的具体方法

### 回答1: 好的,下面是基于内容的推荐算法的具体方法: 1. 特征提取:根据音乐家的特征数据,提取出一些关键特征,比如音乐风格、代表作品等。可以使用TF-IDF算法或者词袋模型对特征进行处理。 2. 相似度计算:根据特征提取的结果,计算出音乐家之间的相似度。可以使用余弦相似度或者皮尔逊相关系数等算法计算相似度。 3. 推荐分数计算:根据用户的历史喜好和音乐家之间的相似度,计算出每个音乐家的推荐分数。可以使用加权平均数等方法计算推荐分数。 4. 结果排序:根据推荐分数,对音乐家进行排序,推荐给用户。 具体实现方法如下: 1. 特征提取:首先将音乐家的特征数据转化为向量形式,比如

TFT屏幕-ILI9486数据手册带命令标签版.pdf

ILI9486手册 官方手册 ILI9486 is a 262,144-color single-chip SoC driver for a-Si TFT liquid crystal display with resolution of 320RGBx480 dots, comprising a 960-channel source driver, a 480-channel gate driver, 345,600bytes GRAM for graphic data of 320RGBx480 dots, and power supply circuit. The ILI9486 supports parallel CPU 8-/9-/16-/18-bit data bus interface and 3-/4-line serial peripheral interfaces (SPI). The ILI9486 is also compliant with RGB (16-/18-bit) data bus for video image display. For high speed serial interface, the ILI9486 also provides one data and clock lane and supports up to 500Mbps on MIPI DSI link. And also support MDDI interface.

数据搜索和分析

跟踪:PROFILES数据搜索:在网络上分析和搜索数据WWW 2018,2018年4月23日至27日,法国里昂1485表征数据集搜索查询艾米莉亚·卡普尔扎克英国南安普敦大学开放数据研究所emilia. theodi.org珍妮·坦尼森英国伦敦开放数据研究所jeni@theodi.org摘要在Web上生成和发布的数据量正在迅速增加,但在Web上搜索结构化数据仍然存在挑战。在本文中,我们探索数据集搜索分析查询专门为这项工作产生的通过众包-ING实验,并比较它们的搜索日志分析查询的数据门户网站。搜索环境的变化以及我们给人们的任务改变了生成的查询。 我们发现,在我们的实验中发出的查询比数据门户上的数据集的搜索查询要长得多。 它们还包含了七倍以上的地理空间和时间信息的提及,并且更有可能被结构化为问题。这些见解可用于根据数据集搜索的特定信息需求和特征关键词数据集搜索,�

html出生日期中年的下拉列表怎么涵盖所有年

### 回答1: 在 HTML 中,可以使用 `<select>` 和 `<option>` 标签来创建下拉列表。要涵盖所有年份,可以使用 JavaScript 动态生成年份选项。 以下是一个示例代码,它会生成从当前年份到 1900 年的年份选项: ```html <select name="year"> <option value="">--请选择--</option> </select> <script> var select = document.querySelector('select[name="year"]'); var currentYear = new Da

freescale IMX6 开发板原理图

freesacle 的arm cortex-a9的双核 四核管脚兼容CPU开发板原理图。