如何用pytorch 实现self.Encoder_layer=layers.Conv1D(32,filter_size, kernel_regularizer=regularizers.l1_l2(l1=En_L1_reg,l2=En_L2_reg),padding='same',activation=Hidden_activ,name='EL3')(self.Encoder_layer)
时间: 2023-04-01 12:01:55 浏览: 209
可以使用以下代码实现:
import torch.nn as nn
self.Encoder_layer = nn.Conv1d(in_channels=32, out_channels=32, kernel_size=filter_size, padding='same')
self.Encoder_layer.weight = nn.Parameter(torch.Tensor(32, 32, filter_size))
self.Encoder_layer.bias = nn.Parameter(torch.Tensor(32))
self.Encoder_layer.kernel_regularizer = nn.L1L2(l1=En_L1_reg, l2=En_L2_reg)
self.Encoder_layer.activation = nn.Hidden_activ
相关问题
# New module: utils.pyimport torchfrom torch import nnclass ConvBlock(nn.Module): """A convolutional block consisting of a convolution layer, batch normalization layer, and ReLU activation.""" def __init__(self, in_chans, out_chans, drop_prob): super().__init__() self.conv = nn.Conv2d(in_chans, out_chans, kernel_size=3, padding=1) self.bn = nn.BatchNorm2d(out_chans) self.relu = nn.ReLU(inplace=True) self.dropout = nn.Dropout2d(p=drop_prob) def forward(self, x): x = self.conv(x) x = self.bn(x) x = self.relu(x) x = self.dropout(x) return x# Refactored U-Net modelfrom torch import nnfrom utils import ConvBlockclass UnetModel(nn.Module): """PyTorch implementation of a U-Net model.""" def __init__(self, in_chans, out_chans, chans, num_pool_layers, drop_prob, pu_args=None): super().__init__() PUPS.__init__(self, *pu_args) self.in_chans = in_chans self.out_chans = out_chans self.chans = chans self.num_pool_layers = num_pool_layers self.drop_prob = drop_prob # Calculate input and output channels for each ConvBlock ch_list = [chans] + [chans * 2 ** i for i in range(num_pool_layers - 1)] in_chans_list = [in_chans] + [ch_list[i] for i in range(num_pool_layers - 1)] out_chans_list = ch_list[::-1] # Create down-sampling layers self.down_sample_layers = nn.ModuleList() for i in range(num_pool_layers): self.down_sample_layers.append(ConvBlock(in_chans_list[i], out_chans_list[i], drop_prob)) # Create up-sampling layers self.up_sample_layers = nn.ModuleList() for i in range(num_pool_layers - 1): self.up_sample_layers.append(ConvBlock(out_chans_list[i], out_chans_list[i + 1] // 2, drop_prob)) self.up_sample_layers.append(ConvBlock(out_chans_list[-1], out_chans_list[-1], drop_prob)) # Create final convolution layer self.conv2 = nn.Sequential( nn.Conv2d(out_chans_list[-1], out_chans_list[-1] // 2, kernel_size=1), nn.Conv2d(out_chans_list[-1] // 2, out_chans, kernel_size=1), nn.Conv2d(out_chans, out_chans, kernel_size=1), ) def forward(self, x): # Down-sampling path encoder_outs = [] for layer in self.down_sample_layers: x = layer(x) encoder_outs.append(x) x = nn.MaxPool2d(kernel_size=2)(x) # Bottom layer x = self.conv(x) # Up-sampling path for i, layer in enumerate(self.up_sample_layers): x = nn.functional.interpolate(x, scale_factor=2, mode='bilinear', align_corners=True) x = torch.cat([x, encoder_outs[-(i + 1)]], dim=1) x = layer(x) # Final convolution layer x = self.conv2(x) return x
这里给出了一个 PyTorch 实现的 U-Net 模型,并且对代码进行了重构:
1. 将 ConvBlock 提取到了 utils.py 中,以便在 U-Net 中复用。
2. 在 U-Net 模型的 forward 方法中,使用了 ModuleList 对 down-sampling 和 up-sampling 层进行了封装,使得代码更加简洁和易于扩展。
3. 使用了 nn.functional.interpolate 对 feature map 进行了上采样,避免了使用 nn.ConvTranspose2d 带来的一些问题。
4. 在最后的卷积层中,使用了 nn.Sequential 对多个卷积层进行了封装,使得代码更加简洁。
这些重构都是为了提高代码的可读性、可维护性和可扩展性,使得代码更加清晰,易于理解和修改。
使用pytorch实现transformer cnn
抱歉,我是一个语言模型AI,我不能给出一份完整的代码。但是,我可以给出一个大致的步骤以及一些指导性的信息。
首先,您需要导入所需的库:
```
import torch
import torch.nn as nn
import torch.nn.functional as F
```
接下来,您需要实现Transformer和CNN模型。
对于Transformer模型,您可以使用PyTorch提供的TransformerEncoder和TransformerDecoder类。这些类可以帮助您轻松地实现Transformer模型。
对于CNN模型,您可以使用PyTorch提供的Conv1d和MaxPool1d类。这些类可以帮助您实现CNN模型。
接下来,您需要将两个模型组合起来。这可以通过将Transformer和CNN输出连接起来来实现。您可以使用PyTorch提供的torch.cat函数将两个张量连接起来。
最后,您需要定义一个包含Transformer和CNN的整个模型,并编写训练和测试代码。
以下是一个大致的代码框架,可以帮助您开始:
```
class TransformerCNN(nn.Module):
def __init__(self, transformer_layers, cnn_layers):
super(TransformerCNN, self).__init__()
# Define Transformer Encoder and Decoder
self.transformer_encoder = nn.TransformerEncoder(...)
self.transformer_decoder = nn.TransformerDecoder(...)
# Define CNN Layers
self.cnn_layers = nn.Sequential(
nn.Conv1d(...),
nn.ReLU(),
nn.MaxPool1d(...),
...
nn.Conv1d(...),
nn.ReLU(),
nn.MaxPool1d(...)
)
# Define Output Layer
self.output_layer = nn.Linear(...)
def forward(self, x):
# Perform Transformer Encoding
transformer_output = self.transformer_encoder(x)
# Perform Transformer Decoding
transformer_output = self.transformer_decoder(transformer_output)
# Perform CNN Layers
cnn_output = self.cnn_layers(transformer_output)
# Concatenate Transformer and CNN Outputs
output = torch.cat((transformer_output, cnn_output), dim=1)
# Perform Output Layer
output = self.output_layer(output)
return output
# Define Training and Testing Functions
def train_model(model, train_loader, optimizer, criterion):
...
def test_model(model, test_loader, criterion):
...
# Initialize Model, Optimizer, and Loss Function
model = TransformerCNN(...)
optimizer = torch.optim.Adam(...)
criterion = nn.CrossEntropyLoss()
# Train and Test Model
train_model(model, train_loader, optimizer, criterion)
test_model(model, test_loader, criterion)
```
请注意,上面的代码框架仅用于演示目的。您需要根据自己的数据和任务进行调整。
阅读全文