如何用pytorch 实现self.Encoder_layer=layers.Conv1D(32,filter_size, kernel_regularizer=regularizers.l1_l2(l1=En_L1_reg,l2=En_L2_reg),padding='same',activation=Hidden_activ,name='EL3')(self.Encoder_layer)
时间: 2023-04-01 16:01:55 浏览: 66
可以使用以下代码实现:
import torch.nn as nn
self.Encoder_layer = nn.Conv1d(in_channels=32, out_channels=32, kernel_size=filter_size, padding='same')
self.Encoder_layer.weight = nn.Parameter(torch.Tensor(32, 32, filter_size))
self.Encoder_layer.bias = nn.Parameter(torch.Tensor(32))
self.Encoder_layer.kernel_regularizer = nn.L1L2(l1=En_L1_reg, l2=En_L2_reg)
self.Encoder_layer.activation = nn.Hidden_activ
相关问题
使用pytorch实现transformer cnn
抱歉,我是一个语言模型AI,我不能给出一份完整的代码。但是,我可以给出一个大致的步骤以及一些指导性的信息。
首先,您需要导入所需的库:
```
import torch
import torch.nn as nn
import torch.nn.functional as F
```
接下来,您需要实现Transformer和CNN模型。
对于Transformer模型,您可以使用PyTorch提供的TransformerEncoder和TransformerDecoder类。这些类可以帮助您轻松地实现Transformer模型。
对于CNN模型,您可以使用PyTorch提供的Conv1d和MaxPool1d类。这些类可以帮助您实现CNN模型。
接下来,您需要将两个模型组合起来。这可以通过将Transformer和CNN输出连接起来来实现。您可以使用PyTorch提供的torch.cat函数将两个张量连接起来。
最后,您需要定义一个包含Transformer和CNN的整个模型,并编写训练和测试代码。
以下是一个大致的代码框架,可以帮助您开始:
```
class TransformerCNN(nn.Module):
def __init__(self, transformer_layers, cnn_layers):
super(TransformerCNN, self).__init__()
# Define Transformer Encoder and Decoder
self.transformer_encoder = nn.TransformerEncoder(...)
self.transformer_decoder = nn.TransformerDecoder(...)
# Define CNN Layers
self.cnn_layers = nn.Sequential(
nn.Conv1d(...),
nn.ReLU(),
nn.MaxPool1d(...),
...
nn.Conv1d(...),
nn.ReLU(),
nn.MaxPool1d(...)
)
# Define Output Layer
self.output_layer = nn.Linear(...)
def forward(self, x):
# Perform Transformer Encoding
transformer_output = self.transformer_encoder(x)
# Perform Transformer Decoding
transformer_output = self.transformer_decoder(transformer_output)
# Perform CNN Layers
cnn_output = self.cnn_layers(transformer_output)
# Concatenate Transformer and CNN Outputs
output = torch.cat((transformer_output, cnn_output), dim=1)
# Perform Output Layer
output = self.output_layer(output)
return output
# Define Training and Testing Functions
def train_model(model, train_loader, optimizer, criterion):
...
def test_model(model, test_loader, criterion):
...
# Initialize Model, Optimizer, and Loss Function
model = TransformerCNN(...)
optimizer = torch.optim.Adam(...)
criterion = nn.CrossEntropyLoss()
# Train and Test Model
train_model(model, train_loader, optimizer, criterion)
test_model(model, test_loader, criterion)
```
请注意,上面的代码框架仅用于演示目的。您需要根据自己的数据和任务进行调整。
pytorch实现CNN和Bi-Transformer时间序列预测
对于时间序列预测问题,CNN和Bi-Transformer是两种常用的模型。下面是使用PyTorch实现这两种模型的代码示例:
1. 使用CNN进行时间序列预测
```python
import torch
import torch.nn as nn
class CNN(nn.Module):
def __init__(self, input_size, hidden_size, kernel_size):
super(CNN, self).__init__()
self.conv = nn.Conv1d(in_channels=input_size, out_channels=hidden_size, kernel_size=kernel_size)
self.relu = nn.ReLU()
self.pool = nn.MaxPool1d(kernel_size=2)
def forward(self, x):
x = self.conv(x)
x = self.relu(x)
x = self.pool(x)
return x
class TimeSeriesCNN(nn.Module):
def __init__(self, input_size, hidden_size, kernel_size):
super(TimeSeriesCNN, self).__init__()
self.cnn1 = CNN(input_size, hidden_size, kernel_size)
self.cnn2 = CNN(hidden_size, hidden_size, kernel_size)
self.linear = nn.Linear(hidden_size, 1)
def forward(self, x):
x = self.cnn1(x)
x = self.cnn2(x)
x = x.flatten(start_dim=1)
x = self.linear(x)
return x
```
2. 使用Bi-Transformer进行时间序列预测
```python
import torch
import torch.nn as nn
class BiTransformer(nn.Module):
def __init__(self, input_size, hidden_size, num_layers, num_heads, dropout):
super(BiTransformer, self).__init__()
self.encoder = nn.TransformerEncoder(nn.TransformerEncoderLayer(
d_model=input_size, nhead=num_heads, dim_feedforward=hidden_size, dropout=dropout), num_layers=num_layers)
self.decoder = nn.TransformerDecoder(nn.TransformerDecoderLayer(
d_model=input_size, nhead=num_heads, dim_feedforward=hidden_size, dropout=dropout), num_layers=num_layers)
self.linear = nn.Linear(input_size, 1)
def forward(self, x):
x = self.encoder(x)
x = self.decoder(x)
x = self.linear(x)
return x
```
以上是使用PyTorch实现CNN和Bi-Transformer进行时间序列预测的代码示例,可以根据具体问题进行修改和调整。
相关推荐











